分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答
解:由z=x-2y得y=$\frac{1}{2}$x-$\frac{z}{2}$,
作出不等式组对应的平面区域如图(阴影部分)
平移直线y=$\frac{1}{2}$x-$\frac{z}{2}$,
由图象可知当直线,过点A时,直线的截距最小,此时z最大,
由 $\left\{\begin{array}{l}{x-y-4=0}\\{y=0}\end{array}\right.$,得 $\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,即A(4,0),
代入目标函数z=x-2y,得z=4,
∴目标函数z=x-2y的最大值是4,
故答案为:4.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢看该节目 | 不喜欢看该节目 | 合计 | |
| 女生 | 5 | ||
| 男生 | 10 | ||
| 合计 | 50 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.0050. | 001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com