精英家教网 > 高中数学 > 题目详情
若α+β=
4

(1)求(1-tanα)(1-tanβ)的值;
(2)求
tan20°+tan40°+tan120°
tan20°tan40°
的值.
考点:两角和与差的正切函数,三角函数的化简求值
专题:三角函数的求值
分析:根据正切函数的和差公式计算即可
解答: 解:(1)∵tan(α+β)=
tanα+tanβ
1-tanαtanβ
=tan
4
=-1
∴(1-tanαtanβ)=-(tanα+tanβ)
∴(1-tanα)(1-tanβ)=1+tanαtanβ-(tanα+tanβ)=1+tanαtanβ+(1-tanαtanβ)=2,
(2)∵tan120°=-tan60°=-tan(20°+40°)=-
tan20°+tan40°
1-tan20°tan40°
=-
3

∴tan20°+tan40°=
3
(1-tan20°tan40°)=
3
-
3
tan20°tan40°
tan20°+tan40°+tan120°
tan20°tan40°
=
3
-
3
tan20°tan40°-
3
tan20°tan40°
=-
3
点评:本题考查了正切函数的两角的和差公式的应用,关键是灵活变形,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)在[-2,2]是奇函数,且在[0,2]上最大值是5,则函数f(x)在[-2,0]上的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-1-2lnx.
(1)当a=1时,求f(x)的最小值;
(2)若a≥2,求证:函数f(x)在(0,e)上无零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,且0<x1<x2,给出下列命题:
f(x1)-f(x2)
x1-x2
<1;
②f(x1)+x2<f(x2)+x1
③x2f(x1)<x1f(x2);
④当lnx1>-1时,x1f(x1)+x2f(x2)>2x2f(x1).
其中所有正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数y=cos(2x-
3
)的图象,只需将函数y=cos(2x+
π
3
)的图象(  )
A、向右平移
π
3
个单位长度
B、向左平移
π
3
个单位长度
C、向左平移
π
2
个单位长度
D、向右平移
π
2
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

若两个非零向量
a
b
,互相垂直,则下列一定成立的是(  )
A、
a
b
=
0
B、
a
+
b
=
a
-
b
C、|
a
+
b
|=|
a
-
b
|
D、(
a
+
b
)•(
a
-
b
)=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的侧面PAD是正三角形,且垂直于底面,底面ABCD是矩形,E是PD的中点,求证:平面ACE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,
BM
=
2
3
B
BD
CN
=
1
4
CA
AB
=
a
AD
=
b
,若
MN
=
ma
+
nb
,求m-n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

{an}为等比数列,Sn是其前n项和,若a2•a3=8a1,且a4与2a5的等差中项为20,则S5=(  )
A、29B、30C、31D、32

查看答案和解析>>

同步练习册答案