精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-1-2lnx.
(1)当a=1时,求f(x)的最小值;
(2)若a≥2,求证:函数f(x)在(0,e)上无零点.
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的极值
专题:计算题,证明题,导数的综合应用
分析:(1)先求f(x)=x-1-2lnx的定义域,求导f′(x)=1-
2
x
=
x-2
x
,从而由导数确定最小值;
(2)求导f′(x)=a-
2
x
=
ax-2
x
,从而确定函数的单调性与最值,从而证明函数f(x)在(0,e)上无零点.
解答: 解:(1)由题意,f(x)=x-1-2lnx的定义域为(0,+∞),
f′(x)=1-
2
x
=
x-2
x

故当0<x<2时,f′(x)<0,
当x>2时,f′(x)>0,
故fmin(x)=2-1-2ln2=1-2ln2;
(2)证明:f′(x)=a-
2
x
=
ax-2
x

故当0<x<
2
a
时,f′(x)<0,
2
a
<x<e时,f′(x)>0,
则f(x)在(0,
2
a
)上是减函数,在(
2
a
,e)上是增函数;
又∵f(
2
a
)=a•
2
a
-1-2ln
2
a
=1-2ln
2
a

∵a≥2,∴0<
2
a
≤1,
∴1-2ln
2
a
≥1;
∴f(x)≥1;
故函数f(x)在(0,e)上无零点.
点评:本题考查了导数的综合应用,同时考查了恒成立问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知⊙F1:(x+1)2+y2=
1
9
,⊙F2:(x-1)2+y2=
121
9
,椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0),F1,F2分别为椭圆C的两个焦点,设P为椭圆C上一点,存在以P为圆心的⊙P与⊙F1外切,与⊙F2内切.
(1)求椭圆C的方程;
(2)过点F2作斜率为k的直线与椭圆C相交于A,B两点,与y轴相交于点D,若
DA
=2
AF2
DB
BF2
,求λ的值.
(3)已知真命题:“如果点T(x0,y0)在椭圆
x2
a2
+
y2
b2
=1(a>b>0)上,那么过点T的椭圆的切线方程为
x0x
a2
+
y0y
b2
=1
.”利用上述结论,解答下面的问题:
已知点Q是直线l:x+2y=8上的动点,过点Q作椭圆C的两条切线QM、QN,M、N为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,点M、N分别在棱PD、PC上,且PC⊥平面AMN.
(1)求AM与PD所成的角;
(2)求二面角P-AM-N的余弦值;
(3)求直线CD与平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
2
0
(4-2x)(4-x2)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD=3,BD=CD=2.
(1)求证:AD⊥BC;
(2)求二面角B-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1的底面ABCD是边长为2的正方形,高为1,M为线段AB的中点,则三棱锥C-MC1D1的体积为(  )
A、
1
2
B、
1
3
C、1
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为实数的等比数列{an}的前k项和为Sk,公比q满足:|q|≠1,若S6n=2S4n+11S2n,则
S10n
S8n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若α+β=
4

(1)求(1-tanα)(1-tanβ)的值;
(2)求
tan20°+tan40°+tan120°
tan20°tan40°
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+y=a 与圆x2+y2=1交于不同的两点A,B,O为坐标原点,若
OA
OB
=a,则a的值为(  )
A、
5
2
B、
1-
5
2
C、
-1-
5
2
D、
-1+
5
2

查看答案和解析>>

同步练习册答案