精英家教网 > 高中数学 > 题目详情
18.已知△ABC内角A,B,C的对边分别为a,b,c,B=60°,b2=ac,则A=(  )
A.30°B.45°C.60°D.90°

分析 利用余弦定理、等边三角形的判定方法即可得出.

解答 解:由余弦定理可得:b2=a2+c2-2accosB=a2+c2-ac=ac,
化为(a-c)2=0,解得a=c.
又B=60°,
∴△ABC是等边三角形,
∴A=60°.
故选:C.

点评 本题考查了余弦定理、等边三角形的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(x,1,2),$\overrightarrow{b}$=(1,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)与($\overrightarrow{b}$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下表提供了某新生婴儿成长过程中时间x(月)与相应的体重y(公斤)的几组对照数据
(1)如y与x具有较好的线性关系,请根据表中提供的数据,求出线性回归方程:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)由此推测当婴儿生长满五个月时的体重为多少?
(参考公式和数据:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•{\overline{x}}^{2}}$  $\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$,$\sum_{i=1}^{n}{x}_{i}{y}_{i}=27.5$)
 x0123
 y33.54.55

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sinωx,其中常数ω>0.
(Ⅰ)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上单调递增,求ω的取值范围;
(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象求y=g(x)的图象离原点O最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意n∈N*均有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+…+$\frac{{c}_{n}}{{b}_{n}}$=an+1成立,求c1+c2+c3+…+c2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn=2n-3n,则a6+a7+a8=215.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1”表示双曲线;q:“关于x的方程x2-mx+1=0没有实数根”.
若“¬p”和“p∨q”都是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线E:y=mx2(m>0),圆C:x2+(y-2)2=4,点F是抛物线E的焦点,点N(x0,y0)(x0>0,y0>0)为抛物线E上的动点,点M(2,-$\frac{1}{2}$),线段MF恰被抛物线E平分.
(1)求m的值;
(2)若y0>4,过点N向圆C作切线,求两条切线与x轴围成的三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.关于x的方程x2-(2a+l)x+a2=0有实数根的一个充分不必要条件是(  )
A.a>1B.a>-2C.a≥-$\frac{1}{4}$D.a≥-4

查看答案和解析>>

同步练习册答案