精英家教网 > 高中数学 > 题目详情
求下列函数的定义域
(1)f(x)=
x+1
-
1
2-x

(2)y=
1
|x+2|-1
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据题意,列出使函数解析式有意义的关于自变量的不等式(组),求出解集即可.
解答: 解:(1)根据题意,得;
x+1≥0
2-x≠0

解得x≥-1,且x≠2;
∴f(x)的定义域是[-1,2)∪(2,+∞);
(2)根据题意,得;
|x+2|-1≠0,
即|x+2|≠1,
解得x≠-1,且x≠-3;
∴f(x)的定义域是{x|x≠-1,且x≠-3}.
点评:本题考查了求函数定义域的问题,解题时应根据函数的解析式,列出使解析式有意义的关于自变量的不等式(组),是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)定义域为[-1,1],且f(x)-f(y)=f(
x-y
1-xy
),且f(
1
2011+x
)=1+f(
1
x
),求P=f(
1
5
)+f(
1
11
)+…+f(
1
r2+r-1
)+…+f(
1
20122
+2012-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,侧面PAB是正三角形,AB=2,BC=
2
,PC=
6
.E、H分别为PA、AB的中点.
(I)求证:PH⊥AC;
(Ⅱ)求三棱锥P-EHD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{xn}的各项为不等于1的正数,数列{yn}满足yn=2logaxn(a>0且a≠1),设y3=19,y6=13.
(Ⅰ)求数列{yn}的前多少项之和为最大,最大值为多少?
(Ⅱ)设bn=2 yn,Sn=b1+b2+…+bn,求Sn
(Ⅲ)试判断,是否存在正整数M,使得当n>M时,xn>1恒成立?若存在,求出相应的M值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且
3
bsinA=acosB.
(Ⅰ)求角B的大小;
(Ⅱ)若b=
3
,a=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=4,过Q(0,-1)作直线l交圆C于AB两点,|AB|=2
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x

(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为
3
2
,求a的值;
(3)若f(x)>x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合 A={x|x2-5x+6=0},B={x|x2+2x-8=0},C={x|x2-ax+a2-19=0}.
(1)求A∪B;
(2)若A=C,求实数a的值;
(3)若A∩C≠∅,B∩C=∅,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x0是方程log2(x+1)=
2
x
的1个根,且x0∈(a,a+1),a∈Z,则a=
 

查看答案和解析>>

同步练习册答案