精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面ABCD是矩形,侧面PAB是正三角形,AB=2,BC=
2
,PC=
6
.E、H分别为PA、AB的中点.
(I)求证:PH⊥AC;
(Ⅱ)求三棱锥P-EHD的体积.
考点:直线与平面垂直的性质,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(Ⅰ)根据勾股定理得BC⊥PB,由ABCD为矩形,得BC⊥AB,从而BC⊥面PAB,进而面PAB⊥面ABCD,由此能证明PH⊥平面ABCD,从而PH⊥AC.
(Ⅱ)由VP-EHD=VD-PEH,利用等积法能求出三棱锥P-EHD的体积.
解答: (Ⅰ)证明:∵PAB为正三角形,AB=2,
∴PB=AB=2,
∵BC=
2
,PC=
6

∴PC2=BC2+PB2
∴根据勾股定理得BC⊥PB
∵ABCD为矩形
∴BC⊥AB
∵PB,AB∈面PAB且交于点B
∴BC⊥面PAB
∵BC∈面ABCD
∴面PAB⊥面ABCD
∵H分别AB的中点,PAB为正三角形,
∴PH⊥AB,∴PH⊥平面ABCD,
∵AC?平面ABCD,∴PH⊥AC.
(Ⅱ)解:由(Ⅰ)知DA⊥平面PEH,DA=BC=
2

S△PEH=
1
4
S△PAB
=
1
4
×
1
2
×
4-1
×
2
=
6
8

∴三棱锥P-EHD的体积VP-EHD=VD-PEH
=
1
3
×DA×S△PEH
=
1
3
×2×
6
8
=
6
12
点评:本题考查异面直线垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

轴截面为正三角形的圆锥称为等边圆锥,则等边圆锥的侧面积是底面积的(  )倍.
A、4
B、3
C、2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-2,1},B={x|x⊆A},试判断A与B的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两个不共线的向量,
(1)已知
AB
=2
e1
+k
e2
CB
=
e1
+3
e2
CD
=2
e1
-
e2
,若三点A,B,D共线,求k的值.
(2)如图,ABCD是一个梯形,
AB
CD
,|
AB
|=2|
CD
|,M、N分别是DC,AB的中点,已知
AB
=
e1
AD
=
e2
,试用
e1
e2
表示
AC
MN

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.
(Ⅰ)证明:平面SBC⊥平面SAB;
(Ⅱ)求二面角A-SC-B的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域
(1)f(x)=
x+1
-
1
2-x

(2)y=
1
|x+2|-1

查看答案和解析>>

科目:高中数学 来源: 题型:

一条光线经过点P(2,3)射在直线x+y+1=0上,反射后,经过点A(1,1),则光线的反射线所在的直线方程为
 

查看答案和解析>>

同步练习册答案