精英家教网 > 高中数学 > 题目详情
2.数列{an}的前n项和Sn满足Sn=$\frac{1}{2}{n^2}$+An,若a2=2,则A=$\frac{1}{2}$,数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和Tn=$\frac{n}{n+1}$.

分析 由已知得a2=S2-S1=$\frac{3}{2}+a$=2,从而a=$\frac{1}{2}$,利用${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,求出an=n,从而$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,由此利用裂项求和法能求出数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和.

解答 解:∵数列{an}的前n项和Sn满足Sn=$\frac{1}{2}{n^2}$+An,a2=2,
∴a2=S2-S1=($\frac{1}{2}×4+2a$)-($\frac{1}{2}×1+a$)=$\frac{3}{2}+a$=2,解得a=$\frac{1}{2}$,
∴${a}_{1}={S}_{1}=\frac{1}{2}×1+\frac{1}{2}$=1,
当n≥2时,an=Sn-Sn-1=($\frac{1}{2}{n}^{2}+\frac{1}{2}n$)-[$\frac{1}{2}(n-1)^{2}+\frac{1}{2}(n-1)$]=n,
当n=1时,上式成立,∴an=n,
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和:
Tn=1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+$…+$\frac{1}{n}-\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
故答案为:$\frac{1}{2}$,$\frac{n}{n+1}$.

点评 本题考查等差数列的前n项和的求法,考查数列的通项公式的求法及应用、裂项求和法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,ABC-A'B'C'为直三棱柱,M为CC的中点,N为AB的中点,AA'=BC=3,AB=2,AC=$\sqrt{13}$.
(1)求证:CN∥平面AB'M;
(2)求三棱锥B'-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在棱长为a的正方体ABCD-A1B1C1D1中,点M是AB的中点,则点A到平面A1DM的距离为(  )
A.$\frac{\sqrt{6}}{6}$aB.$\frac{\sqrt{6}}{3}$aC.$\frac{\sqrt{2}}{2}$aD.$\frac{1}{2}$a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a,b为不重合的两条直线,α,β为不重合的两个平面,给
出下列命题:
(1)若a∥α且b∥α,则a∥b;       
(2)若a∥α且a⊥β,则α∥β
(3)若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β
(4)若α⊥β,则一定存在直线l,使得l⊥α,l∥β
上面命题中,所有真命题的序号是(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知 锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且sin2C=2$\sqrt{3}$sinAsinB.
(1)求角C的值;
(2)设函数f(x)=sin(ωx+$\frac{π}{6}$)+cosωx(ω>0),且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量X服从正态分布N(1,σ2),若P(X>-2)=0.9,则P(1<X<4)=(  )
A.0.2B.0.3C.0.4D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}是公差为2的等差数列,且a1,a2,a5成等比数列,则S8=(  )
A.36B.49C.64D.81

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知复数z=(a-i)(1+i)(a∈R,i是虚数单位)是实数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A、B分别为椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,两个不同的动点P、Q在椭圆C上且关于x轴对称,设直线AP、BQ的斜率分别为m、n,则当$\frac{1}{2mn}$+ln|m|+ln|n|取最小值时,椭圆C的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案