精英家教网 > 高中数学 > 题目详情
8.用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有732种不同的涂色方法.

分析 分三类讨论:A、C、E用同一颜色、A、C、E用2种颜色、A、C、E用3种颜色,利用分步计数原理,可得结论.

解答 解:考虑A、C、E用同一颜色,此时共有4×3×3×3=108种方法.
考虑A、C、E用2种颜色,此时共有C42×6×3×2×2=432种方法.
考虑A、C、E用3种颜色,此时共有A43×2×2×2=192种方法.
故共有108+432+192=732种不同的涂色方法.
故答案为732.

点评 本题考查理解题意能力,考查分类思想的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知三棱锥A-BCD中,BC⊥CD,AB=AD=$\sqrt{2}$,BC=1,CD=$\sqrt{3}$,则该三棱锥外接球的体积为$\frac{4}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数f(x)=sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$个单位,所得的图象对应的解析式为(  )
A.y=sin2xB.y=cosxC.y=sin(2x+$\frac{2π}{3}$)D.y=sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=sin(x+$\frac{5π}{2}$)的图象关于(  )
A.原点对称B.y轴对称C.直线x=$\frac{5π}{2}$对称D.直线x=-$\frac{5π}{2}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=|ax-1|,若实数a>0,不等式f(x)≤3的解集是{x|-1≤x≤2}.
(Ⅰ)求a的值;
(Ⅱ)若$\frac{f(x)+f(-x)}{3}$<|k|存在实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.
将△BCD沿BD折到△BED的位置,使得二面角E-BD-A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且$AP=\sqrt{2}$.
(Ⅰ)证明:直线PQ∥平面ADE;
(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(Ⅰ)请填写表:
平均数方差命中9环及9环以上的次数
(Ⅱ)从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);
③从折线图上两人射击命中环数的走势看(分析谁更有潜力).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>1,则不等式(x-2017)3f(x-2017)-27>0的解集为(  )
A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l⊥平面α,垂足为O,三角形ABC的三边分别为BC=1,AC=2,AB=$\sqrt{5}$.若A∈l,C∈α,则BO的最大值为1+$\sqrt{2}$.

查看答案和解析>>

同步练习册答案