| A. | 432 | B. | 456 | C. | 534 | D. | 720 |
分析 先分别求出2,4,6插入到1,3,5的所形成的空中,再排除2,4,6都在1,3,5的所形成的空中,问题得以解决.
解答 解:第一类,从1,3,5品种选2个并捆绑在一起,和另外1个全排,形成了3个空,先把2号品种,插入到中间空中,再把4号插入到1,2,3,5,所形成的4个空的中的一个,然后把6号再插入到其中,故有A32A22A41A51=240种,
第二类,从1,3,5品种选2个并捆绑在一起,和另外1个全排,形成了3个空,先把4或6号,插入到中间空中,再把剩下的一个插入到所形成的4个空的中的一个,然后把2号插入前面所成的3个空(不包含两端)的1个,故有A32A22A21A41A31=288种,
从1,3,5品种选2个并捆绑在一起,和另外1个排列,把2,4,6号捆绑在一起并插入到其中,有A32A22A33=72种,
故编号为1,3,5的三个品种中有且只有两个相邻,且2号品种不能种植在两端,则不同的种植方法的种数为240+288-72=456种,
故选:B.
点评 本题考查了排列中的相邻问题和不相邻问题,关键是优先安排特殊元素,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<3} | B. | {x|-1<x<0} | C. | {x|-2<x<0} | D. | {x|-3<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | cosα的最小值为$\frac{\sqrt{2}}{2}$ | B. | cosα的最小值为$\frac{1}{3}$ | ||
| C. | sin(2α+$\frac{π}{2}$)的最小值为$\frac{8}{25}$ | D. | sin($\frac{π}{2}$-2α)的最小值为$\frac{7}{25}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com