【题目】已知定点
,
为圆
上任意一点,线段
上一点
满足
,直线
上一点
,满足
.
(1)当
在圆周上运动时,求点
的轨迹
的方程;
(2)若直线
与曲线
交于
两点,且以
为直径的圆过原点
,求证:直线
与
不可能相切.
【答案】(1)
;(2)见解析.
【解析】试题分析:(1)由
,直线
上一点
,满足
,可得
为线段
的垂直平分线,求出圆
的圆心坐标为
,半径为
,得到
,利用椭圆的定义,求解点
的轨迹
的方程即可;(2)当直线
的斜率存在时,设直线
为
,联立直线与椭圆的方程,得
,消去
,利用判别式以及韦达定理,结合
,可证明直线
与
一定相交,从而可得结论.
试题解析:(Ⅰ)由
,直线
上一点
,满足
,可得
时线段
的垂直平分线,求出圆
的圆心坐标为
,半径为
,得到
,点M的轨迹是以N、Q为焦点,长轴长为
的椭圆,即2a=
,2c=
,∴b=
.
所以点M的轨迹C的方程为:
.
(Ⅱ)当直线的斜率存在时,设直线l为y=kx+m,A(x1,y1),B(x2,y2),联立直线与椭圆的方程,
得
消去y并整理得(1+2k2)x2+4kmx+2m2-6=0.
因为直线与椭圆有两个不同的交点,所以
△=16k2m2-4(1+2k2)(2m2-6)>0,化简得:m2<6k2+3①
由韦达定理得:
.
∴
.
∵
,∴x1x2+y1y2=0,即
,
整理得m2=2k2+2满足①式,∴d=
,即原点到直线l为的距离是
,
∴直线l与圆x2+y2=4相交.
当直线的斜率不存在时,直线为x=m,与椭圆C交点为A(m,
),B(m,
)
∵
,∴
.
此时直线为x=
,显然也与圆x2+y2=4相交.
综上,直线l与定圆E:x2+y2=4不可能相切.
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为 1,
为
的中点,
为线段
上的动点,过点A、P、Q的平面截该正方体所得的截面记为
.则下列命题正确的是__________(写出所有正确命题的编号).
①当
时,
为四边形;②当
时,
为等腰梯形;③当
时,
为六边形;④当
时,
的面积为
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).
![]()
(1)求甲、乙两人成绩的平均数和中位数;
(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC
(1)求三棱锥D-ABC的体积
(2)求证:平面DAC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN=
CA,求证:MN∥平面DEF
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与上、下顶点构成直角三角形,以椭圆
的长轴长为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点且不平行于
轴的动直线与椭圆
相交于
两点,探究在
轴上是否存在定点
,使得
为定值?若存在,试求出定值和点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点
与两个定点
,
的距离之比等于5.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为
,过点
的直线
被
所截得的线段的长为8,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图 1,在直角梯形
中,
,且
.现以
为一边向形外作正方形
,然后沿边
将正方形
翻折,使
平面与平面
垂直,
为
的中点,如图 2.
(1)求证:
平面
;
(2)求证:
平面
;
(3)求点
到平面
的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2017年该市共享单车用户年龄登记分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁至39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有
是“年轻人”.
![]()
(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列
列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
![]()
(2)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量
,求
的分布与期望.
(参考数据:独立性检验界值表
,其中
)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com