精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(
b
a
).
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(Ⅰ)易求f(x)+f(x+4)=
-2x-2,x<-3
4,-3≤x≤1
2x+2,x>1
,利用一次函数的单调性可求f(x)+f(x+4)≥8的解集;
(Ⅱ)f(ab)>|a|f(
b
a
)?|ab-1|>|a-b|,作差证明即可.
解答: 解:(Ⅰ)f(x)+f(x+4)=|x-1|+|x+3|=
-2x-2,x<-3
4,-3≤x≤1
2x+2,x>1

当x<-3时,由-2x-2≥8,解得x≤-5;
当-3≤x≤1时,f(x)=4≥8不成立;
当x>1时,由2x+2≥8,解得x≥3.
∴不等式f(x)+f(x+4)≥8的解集为{x|x≤-5,或x≥3}.              
(Ⅱ)证明:∵f(ab)>|a|f(
b
a
)?|ab-1|>|a-b|,
又|a|<1,|b|<1,
∴|ab-1|2-|a-b|2=(a2b2-2ab+1)-(a2-2ab+b2)=(a2-1)(b2-1)>0,
∴|ab-1|>|a-b|.
故所证不等式成立.
点评:本题考查绝对值不等式的解法,通过对x范围的分析讨论,去掉绝对值符号,利用一次函数的单调性求最值是关键,考查运算与推理证明的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥O-ABC,A、B、C三点均在球心O的表面上,且AB=BC=1,∠ABC=120°,三棱锥O-ABC的体积为
5
4
,求球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

合肥市环保总站对2013年11月合肥市空气质量指数发布如图趋势图.
AQI指数 天数
(60,120]  
(120,180]  
(180,240]  
(240,300]  
(Ⅰ)请根据如图所示趋势图,完成表并根据表画出频率分布直方图,
(Ⅱ)试根据频率分布直方图估计合肥市11月份AQI指数的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,
sinα
sin(α+2β)
),B(
sinα
sin(α-2β)
-2,1),且
OA
OB
=0,sinβ≠0,sinα-kcosβ=0,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-2,4]上随机地取一个数x,则满足|x|≤3的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的周期:
(1)y=sin
2
3
x,x∈R

(2)y=
1
2
cos4x,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意两个非零的平面向量
α
β
,定义
α
o
β
=
α
β
β
β
,若平面向量
a
b
满足|
a
|≥|
b
|>0,
a
b
的夹角θ∈[0,
π
4
],且
a
o
b
b
o
a
都在集合{
n
m
|m∈Z,n∈Z}中.给出下列命题:
①若m=1时,则
a
o
b
=
b
o
a
=1.
②若m=2时,则
a
o
b
=
1
2

③若m=3时,则
a
o
b
的取值个数最多为7.
④若m=2014时,则
a
o
b
的取值个数最多为
20142
2

其中正确的命题序号是
 
(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,且角A=60°,若S△ABC=
15
3
4
,且5sinB=3sinC,则ABC的周长等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+x,g(x)=log3x+x,h(x)=x-
1
x
的零点依次为a,b,c,则(  )
A、a<b<c
B、c<b<a
C、c<a<b
D、b<a<c

查看答案和解析>>

同步练习册答案