精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=3x,g(x)=$\frac{{1-{a^x}}}{{1+{a^x}}}$(a>1).
(1)若f(a+2)=81,求实数a的值,并判断函数g(x)的奇偶性;
(2)用定义证明:函数g(x)在R上单调递减;
(3)求函数g(x)的值域.

分析 (1)根据f(x)的解析式,求出a的值,从而求出g(x)的解析式,判断函数的奇偶性即可;
(2)根据函数单调性的定义证明即可;
(3)根据1+ax∈(1,+∞),从而得到$\frac{2}{{1+{a^x}}}∈(0,2)$,求出g(x)的值域即可.

解答 解:(1)∵f(x)=3x
∴f(a+2)=3a+2=81,解得a=2.
∵$g(x)=\frac{{1-{2^x}}}{{1+{2^x}}}$(x∈R),
∴$g(-x)=\frac{{1-{2^{-x}}}}{{1+{2^{-x}}}}=\frac{{{2^x}-1}}{{{2^x}+1}}=-g(x)$,
即函数g(x)是奇函数.
证明:(2)任取x1,x2∈R,且x1<x2
则$g({x_1})-g({x_2})=\frac{{1-{a^{x_1}}}}{{1+{a^{x_2}}}}-\frac{{1-{a^{x_2}}}}{{1+{a^{x_2}}}}$
=$\frac{{(1-{a^{x_1}})(1+{a^{x_2}})-(1-{a^{x_2}})(1+{a^{x_1}})}}{{(1+{a^{x_1}})(1+{a^{x_2}})}}=\frac{{2({a^{x_2}}-{a^{x_1}})}}{{(1+{a^{x_1}})(1+{a^{x_2}})}}$.
∵x1<x2,a>1,
∴${a^{x_2}}-{a^{x_1}}>0$,$(1+{a^{x_1}})(1+{a^{x_2}})>0$,
∴g(x1)-g(x2)>0,
即g(x1)>g(x2),
故函数g(x)在R上单调递减.
解:(3)∵$g(x)=\frac{{1-{a^x}}}{{1+{a^x}}}=\frac{2}{{1+{a^x}}}-1$,x∈R,
∴1+ax∈(1,+∞),
从而$\frac{2}{{1+{a^x}}}∈(0,2)$,
∴g(x)∈(-1,1)
故函数g(x)的值域为(-1,1)

点评 本题考查了函数的奇偶性问题,考查定义判断函数的单调性,考查求函数的值域问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-1|+1,不等式f(x)<2的解集为P.
(1)若不等式||x|-2|<1的解集为Q,求证:P∩Q=∅;
(2)若m>1,且n∈P,求证:$\frac{m+n}{1+mn}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某工厂甲、乙、丙、丁四个车间生产了同一种产品共计2800件,现要用分层抽样的方法从中抽取140件进行质量检测,且甲、丙两个车间共抽取的产品数量为60,则乙、丁两车间生产的产品总共有(  )
A.1000件B.1200件C.1400件D.1600件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$sin({α-\frac{7π}{6}})=\frac{1}{3}$,则$sin({2α+\frac{7π}{6}})$的值为-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:函数f(x)=$\sqrt{4-x}$+lg(3x-9)的定义域为集合A,集合B={x|(x-a)[x-(a+3)]<0},
(1)若A⊆B,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列命题:
①函数y=sin(x+$\frac{π}{4}$)在闭区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数;
②直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)图象的一条对称轴;
③要得到函数y=sin2x的图象,需将函数y=cos(2x-$\frac{π}{3}$)的图象向右平移$\frac{π}{12}$单位;
④函数f(x)=Asin(x+φ),(A>0)在x=$\frac{π}{4}$处取到最小值,则y=f($\frac{3π}{4}$-x)是奇函数.
其中,正确的命题的序号是:②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在三棱锥PABQ中,D,C,E,F分别是AQ,BQ,AP,BP的中点,PD与EQ交于点G,PC与FQ交于点H,连接GH.求证:
(1)求证:AB∥GH.
(2)若三棱锥P-ABQ为正四面体,且棱长为2,求多面体ADGE-BCHF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设M={α|α=k•90°,k∈Z}∪{α|α=k•180°+45°,k∈Z},N={α|α=k•45°,k∈Z},则(  )
A.M⊆NB.M?NC.M=ND.M∩N=Φ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O为AC中点,D是BC上一点,OP⊥底面ABC,BC⊥面POD.
(Ⅰ)求证:点D为BC中点;
(Ⅱ)当k取何值时,O在平面PBC内的射影恰好是PD的中点.

查看答案和解析>>

同步练习册答案