精英家教网 > 高中数学 > 题目详情
15.已知:函数f(x)=$\sqrt{4-x}$+lg(3x-9)的定义域为集合A,集合B={x|(x-a)[x-(a+3)]<0},
(1)若A⊆B,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

分析 (1)求出f(x)的定义域确定出A,表示出B中不等式的解集,根据A为B的子集,确定出a的范围即可;
(2)由A与B的交集为空集,确定出a的范围即可.

解答 解:(1)由函数f(x)=$\sqrt{4-x}$+lg(3x-9),得到$\left\{\begin{array}{l}{4-x≥0}\\{{3}^{x}-9>0}\end{array}\right.$,
解得:2<x≤4,即A=(2,4],
由题意得:B=(a,a+3),
∵A⊆B,
∴a的范围1<a≤2;
(2)∵A∩B=∅,
∴a+3≤2或a≥4,
解得:a≤-1或a≥4.

点评 此题考查了交集及其运算,以及集合的包含关系判断及应用,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知△ABC满足c=2acosB  (a,b,c分别为角A、B、C的对边),试判断三角形ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C经过点A(0,2),B(2,0),圆C的圆心在圆x2+y2=2的内部,且直线3x+4y+5=0被圆C所截得的弦长为2$\sqrt{3}$,点P为圆C上异于A、B的任意一点,直线PA与x轴交于点M,直线PB与y轴交于点N.
(1)求圆C的方程;
(2)求证:|AN|•|BM|为定值;
(3)当$\overrightarrow{PA}$•$\overrightarrow{PB}$取得最大值时,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线y=2x+1与圆x2+y2=1的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若不等式x2-ax+b<0的解集为{x|-1<x<3},则a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=3x,g(x)=$\frac{{1-{a^x}}}{{1+{a^x}}}$(a>1).
(1)若f(a+2)=81,求实数a的值,并判断函数g(x)的奇偶性;
(2)用定义证明:函数g(x)在R上单调递减;
(3)求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图C,D是以AB为直径的圆上的两点,AB=2AD=2$\sqrt{3}$,AC=BC,F是AB上的一点,且AF=$\frac{1}{3}$AB,CE⊥面ABD,CE=$\sqrt{2}$.
(1)求证:AD⊥平面BCE;
(2)求证AD∥平面CEF;
(3)求三棱锥A-CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足a1=6,an+1-an=2n,记cn=$\frac{{a}_{n}}{n}$,且存在正整数M,使得对一切n∈N*,cn≥M恒成立,则M最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知首项为$\frac{3}{2}$的等比数列{an}的前n项和为Sn,n∈N*,且-2S2,S3,4S4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对于数列$\left\{{A_n^{\;}}\right\}$,若存在一个区间M,均有Ai∈M,(i=1,2,3…),则称M为数列$\left\{{A_n^{\;}}\right\}$的“容值区间”,设${b_n}={S_n}+\frac{1}{S_n}$,试求数列{bn}的“容值区间”长度的最小值.

查看答案和解析>>

同步练习册答案