分析 (1)依题意AD⊥BD,由CE⊥平面ABD,得CE⊥AD,再由线面垂直的判定可得AD⊥平面BCE;
(2)在Rt△BCE中,求解直角三角形可得BE=2,BD=3.再由AF=$\frac{1}{3}$AB,得$\frac{BF}{BA}=\frac{2}{3}$,可得$\frac{BF}{BA}=\frac{BE}{BD}=\frac{2}{3}$,从而得到AD∥EF,再由线面平行的判定可得AD∥平面CEF;
(3)由(2)知AD∥EF,AD⊥ED,且ED=BD-BE=1,由F到AD的距离等于E到AD的距离为1.再求出三角形FAD的面积,然后利用等积法求得三棱锥A-CFD的体积.
解答 (1)证明:依题意:AD⊥BD,
∵CE⊥平面ABD,∴CE⊥AD,![]()
∵BD∩CE=E,∴AD⊥平面BCE;
(2)证明:Rt△BCE中,∵$CE=\sqrt{2}$,$BC=\sqrt{6}$,
∴BE=2,
Rt△ABD中,$AB=2\sqrt{3}$,$AD=\sqrt{3}$,∴BD=3.
∵AF=$\frac{1}{3}$AB,∴$\frac{BF}{BA}=\frac{2}{3}$,
∴$\frac{BF}{BA}=\frac{BE}{BD}=\frac{2}{3}$,则AD∥EF,
∵AD?平面CEF,EF?平面CEF,
∴AD∥平面CEF;
(3)解:由(2)知AD∥EF,AD⊥ED,且ED=BD-BE=1,
∴F到AD的距离等于E到AD的距离为1.
${S_{△FAD}}=\frac{1}{2}•\sqrt{3}•1=\frac{{\sqrt{3}}}{2}$.
∵CE⊥平面ABD,
∴${V_{A-CFD}}={V_{C-AFD}}=\frac{1}{3}•{S_{△FAD}}•CE=\frac{1}{3}•\frac{{\sqrt{3}}}{2}•\sqrt{2}=\frac{{\sqrt{6}}}{6}$.
点评 本题考查直线与平面平行的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com