精英家教网 > 高中数学 > 题目详情
16.计算:
(Ⅰ)(-$\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+${(0.002)^{-\frac{1}{2}}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0

(Ⅱ)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

分析 (1)利用指数的运算性质即可得出.
(2)利用对数的运算性质即可得出.

解答 解:(Ⅰ)原式=$(\frac{3}{2})^{3×(-\frac{2}{3})}$+$50{0}^{-1×(-\frac{1}{2})}$-$\frac{10(\sqrt{5}+2)}{(\sqrt{5}-2)(\sqrt{5}+2)}$+1=$\frac{4}{9}$+10$\sqrt{5}$-10$\sqrt{5}$-20+1=-$\frac{167}{9}$
(Ⅱ)原式=$lg\frac{\frac{4\sqrt{2}}{7}×\sqrt{245}}{{2}^{2}}$=lg$\sqrt{10}$=$\frac{1}{2}$.

点评 本题考查了指数与对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知圆C经过点A(0,2),B(2,0),圆C的圆心在圆x2+y2=2的内部,且直线3x+4y+5=0被圆C所截得的弦长为2$\sqrt{3}$,点P为圆C上异于A、B的任意一点,直线PA与x轴交于点M,直线PB与y轴交于点N.
(1)求圆C的方程;
(2)求证:|AN|•|BM|为定值;
(3)当$\overrightarrow{PA}$•$\overrightarrow{PB}$取得最大值时,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图C,D是以AB为直径的圆上的两点,AB=2AD=2$\sqrt{3}$,AC=BC,F是AB上的一点,且AF=$\frac{1}{3}$AB,CE⊥面ABD,CE=$\sqrt{2}$.
(1)求证:AD⊥平面BCE;
(2)求证AD∥平面CEF;
(3)求三棱锥A-CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足a1=6,an+1-an=2n,记cn=$\frac{{a}_{n}}{n}$,且存在正整数M,使得对一切n∈N*,cn≥M恒成立,则M最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程4x-2x-1+a=0有负根,则a的取值范围是(  )
A.$a≥\frac{1}{8}$B.$0<a≤\frac{1}{16}$C.$-\frac{1}{8}≤a<0$D.$-\frac{1}{2}<a≤\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲,乙,丙三个学生数学考试成绩分别为92,75,98.设计一程序计算这三个学生数学成绩的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\left\{\begin{array}{l}{{e}^{x}+1,x<1}\\{f(lnx),x≥1}\end{array}\right.$,则f(e)=(  )
A.0B.1C.2D.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知首项为$\frac{3}{2}$的等比数列{an}的前n项和为Sn,n∈N*,且-2S2,S3,4S4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对于数列$\left\{{A_n^{\;}}\right\}$,若存在一个区间M,均有Ai∈M,(i=1,2,3…),则称M为数列$\left\{{A_n^{\;}}\right\}$的“容值区间”,设${b_n}={S_n}+\frac{1}{S_n}$,试求数列{bn}的“容值区间”长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个函数中,既是奇函数又在定义域上单调递减的是(  )
A.y=2-|x|B.y=tanxC.y=-x3D.$y={log_{\frac{1}{5}}}x$

查看答案和解析>>

同步练习册答案