精英家教网 > 高中数学 > 题目详情
10.若不等式x2-ax+b<0的解集为{x|-1<x<3},则a+b=-1.

分析 根据不等式x2-ax+b<0与对应方程解的情况,利用由根与系数的关系,求出a、b的值.

解答 解:∵不等式x2-ax+b<0的解集为(-1,3),
∴方程x2-ax+b=0的解-1和3,
由根与系数的关系,得;$\left\{\begin{array}{l}{a=-1+3}\\{b=-1×3}\end{array}\right.$,
∴a=2,b=-3;
∴a+b=-1.
故答案为:-1.

点评 本题考查了一元二次不等式与一元二次方程的应用问题,也考查了根与系数的关系的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.定义2×2矩阵$[\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}]$=a1a4-a2a3,若f(x)=$[\begin{array}{l}{cosx-sinx}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{cosx+sinx}\end{array}]$,则f(x)(  )
A.图象关于(π,0)中心对称B.图象关于直线$x=\frac{π}{2}$对称
C.在区间$[-\frac{π}{6},0]$上单调递增D.周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.A是曲线ρ=3cosθ上任意一点,点A到直线ρcosθ=-1距离的最大值为(  )
A.$\frac{5}{2}$B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD是正方形,且平面ABCD⊥平面ABEG,F是AG上一点,且△ABE与△AEF都是等腰直角三角形,AB=AE,AF=EF.
(1)求证:EF⊥平面BCE;
 (2)设线段CD,AE的中点分别为P,M,求三棱锥M-BDP和三棱锥F-BCE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≥6的解集为M.
(Ⅰ) 求M
(Ⅱ) 当a,b∈M时,求证:$\sqrt{3}|a+b|<|ab+3|$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:函数f(x)=$\sqrt{4-x}$+lg(3x-9)的定义域为集合A,集合B={x|(x-a)[x-(a+3)]<0},
(1)若A⊆B,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有16个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,给出下面三个结论:
①BC∥平面PDF;
②DF⊥平面PAE;
③平面PDF⊥平面ABC.
其中不成立的结论是③.(写出所有不成立结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$(n∈N*),数列{bn}的前n项和Tn满足Tn=3n-1(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)求数列{$\frac{{b}_{n}}{2{a}_{n}}$}的前n项和Sn

查看答案和解析>>

同步练习册答案