精英家教网 > 高中数学 > 题目详情

【题目】高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.

(Ⅰ)理论上,小球落入4号容器的概率是多少?

(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.

【答案】(Ⅰ);(Ⅱ)的分布列见解析,数学期望是

【解析】

)若要小球落入4号容器,则在通过的四层中有三层需要向右,一层向左,根据二项分布公式可求得概率;()落入4号容器的小球个数的可能取值为0123,算出对应事件概率,利用离散型随机变量分布列数学期望的公式可求得结果.

解:(Ⅰ)记“小球落入4号容器”为事件

若要小球落入4号容器,则在通过的四层中有三层需要向右,一层向左,

∴理论上,小球落入4号容器的概率.

(Ⅱ)落入4号容器的小球个数的可能取值为0,1,2,3,

的分布列为:

0

1

2

3

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】谢尔宾斯基三角形(Sierpinski triangle)是一种分形几何图形,由波兰数学家谢尔宾斯基在1915年提出,它是一个自相似的例子,其构造方法是:

1)取一个实心的等边三角形(图1);

2)沿三边中点的连线,将它分成四个小三角形;

3)挖去中间的那一个小三角形(图2);

4)对其余三个小三角形重复(1)(2)(3)(4)(图3.

制作出来的图形如图4….

若图1(阴影部分)的面积为1,则图4(阴影部分)的面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以(单位:度)分组的频率分布直方图如下图:

若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:

月平均用电量(度)

使用峰谷电价的户数

3

9

13

7

2

1

(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);

(2)()将“一般用户”和“大用户”的户数填入下面的列联表:

一般用户

大用户

使用峰谷电价的用户

不使用峰谷电价的用户

()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?

0.025

0.010

0.001

5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.

1)求PX=2);

2)求事件X=4且甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,一个水斗从点A(3,-3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t秒后,水斗旋转到P点,设P的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).则下列叙述错误的是(  )

A.R=6,ω=,φ=-

B.当t∈[35,55]时,点P到x轴的距离的最大值为6

C.当t∈[10,25]时,函数y=f(t)单调递减

D.当t=20时,|PA|=6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点.

)求证:平面

)求证:平面

)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4公里,丙、甲两地距离是丙、乙两地距离的倍,则这个三角形信号覆盖区域的最大面积(单位:平方公里)是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的方程为,其中常数F是抛物线的焦点.

1)设A是点F关于顶点O的对称点,P是抛物线上的动点,求的最大值;

2)设是两条互相垂直,且均经过点F的直线,与抛物线交于点AB与抛物线交于点CD,若点G满足,求点G的轨迹方程.

查看答案和解析>>

同步练习册答案