【题目】已知抛物线
:
(
),圆
:
(
),抛物线
上的点到其准线的距离的最小值为
.
![]()
(1)求抛物线
的方程及其准线方程;
(2)如图,点
是抛物线
在第一象限内一点,过点P作圆
的两条切线分别交抛物线
于点A,B(A,B异于点P),问是否存在圆
使AB恰为其切线?若存在,求出r的值;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:
,且对任意的
,
(
,
,
,
)都有
,则称数列
为“G”数列.
(1)已知等比数列
的通项为
,证明:
是“G”数列;
(2)记数列
的前n项和为
且有
,若对每一个
取
,
中的较小者组成新的数列
,若数列
为“G”数列,求实数
的取值范围?
(3)若数列
是“G”数列,且数列
的前n项之积
满足
,求证:数列
是等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,过点
的直线交抛物线
于
和
两点.
(1)当
时,求直线
的方程;
(2)若过点
且垂直于直线
的直线
与抛物线
交于
两点,记
与
的面积分别为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
的右焦点为
,右顶点为
,已知椭圆离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
的直线
与椭圆
交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省确定从2021年开始,高考采用“
”的模式,取消文理分科,即“3”包括语文、数学、外语,为必考科目;“1”表示从物理、历史中任选一门;“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取
名学生进行调查.
(1)已知抽取的
名学生中含男生110人,求
的值及抽取到的女生人数;
(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的
名学生进行问卷调杳(假定每名学生在这两个科目中必须洗择一个科目且只能选择一个科目).下表是根据调查结果得到的
列联表,请将列联表补充完整,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
性别 | 选择物理 | 选择历史 | 总计 |
男生 | 50 | ||
女生 | 30 | ||
总计 |
(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.
附:
,其中
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,直线l的参数方程为
(t为参数),曲线
的方程为
.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求直线l和曲线
的极坐标方程;
(2)曲线
分别交直线l和曲线
于点A,B,求
的最大值及相应
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数,
).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程和
的参数方程;
(2)若直线
与曲线
相交于
两点,且
的面积为
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com