【题目】设函数f(x)=sin(ωx﹣
)+sin(ωx﹣
),其中0<ω<3,已知f(
)=0.(12分)
(Ⅰ)求ω;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移
个单位,得到函数y=g(x)的图象,求g(x)在[﹣
,
]上的最小值.
【答案】解:(Ⅰ)函数f(x)=sin(ωx﹣
)+sin(ωx﹣
)
=sinωxcos
﹣cosωxsin
﹣sin(
﹣ωx)
=
sinωx﹣
cosωx
=
sin(ωx﹣
),
又f(
)=
sin(
ω﹣
)=0,
∴
ω﹣
=kπ,k∈Z,
解得ω=6k+2,
又0<ω<3,
∴ω=2;
(Ⅱ)由(Ⅰ)知,f(x)=
sin(2x﹣
),
将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=
sin(x﹣
)的图象;
再将得到的图象向左平移
个单位,得到y=
sin(x+
﹣
)的图象,
∴函数y=g(x)=
sin(x﹣
);
当x∈[﹣
,
]时,x﹣
∈[﹣
,
],
∴sin(x﹣
)∈[﹣
,1],
∴当x=﹣
时,g(x)取得最小值是﹣
×
=﹣
.
【解析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f(
)=0求出ω的值;
(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣
,
]时g(x)的最小值.
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:
,以及对函数y=Asin(ωx+φ)的图象变换的理解,了解图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象.
科目:高中数学 来源: 题型:
【题目】若函数f(x)=a|x﹣b|+c满足①函数f(x)的图象关于x=1对称;②在R上有大于零的最大值;③函数f(x)的图象过点(0,1);④a,b,c∈Z,试写出一组符合要求的a,b,c的值 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】商家生产一种产品,需要先进行市场调研,计划对北京、上海、广州三地进行市场调研,待调研结束后决定生产的产品数量,下列四种方案中最可取的是( )
A. ![]()
B. ![]()
C. ![]()
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
i | 1 | 2 | 3 | 4 | 5 |
|
xi | 2 | 3 | 4 | 5 | 6 | |
yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 | |
xi yi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 |
若由资料知,y对x呈线性相关关系,试求:
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=ax3+bx+c为奇函数其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f/(x)的最小值为-12
(1)求a,b,c的值
(2)求函数极大值和极小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,下列结论中错误的是
A.
, f(
)=0
B. 函数y=f(x)的图像是中心对称图形
C. 若
是f(x)的极小值点,则f(x)在区间(-∞,
)单调递减
D. 若
是f(x)的极值点,则
(
)=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=log3(x2+2x﹣8)的定义域为A,函数g(x)=x2+(m+1)x+m.
(1)若m=﹣4时,g(x)≤0的解集为B,求A∩B;
(2)若存在
使得不等式g(x)≤﹣1成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中的更相减损法的思路与图相似.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( ) ![]()
A.2
B.4
C.6
D.8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com