精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=log3(x2+2x﹣8)的定义域为A,函数g(x)=x2+(m+1)x+m.
(1)若m=﹣4时,g(x)≤0的解集为B,求A∩B;
(2)若存在 使得不等式g(x)≤﹣1成立,求实数m的取值范围.

【答案】
(1)解:由x2+2x﹣8>0,解得:x∈(﹣∞,﹣4)∪(2,+∞),

故则函数f(x)=log3(x2+2x﹣8)的定义域A=(﹣∞,﹣4)∪(2,+∞),

若m=﹣4,g(x)=x2﹣3x﹣4,由x2﹣3x﹣4≤0,解得:x∈[﹣1,4],则B=[﹣1,4]

所以A∩B=(2,4]


(2)解:存在 使得不等式x2+(m+1)x+m≤﹣1成立,

即存在 使得不等式﹣m≥ 成立,所以﹣m≥( min

因为 =x+1+ ﹣1≥1,

当且仅当x+1=1,即x=0时取得等号

所以﹣m≥1,

解得:m≤﹣1


【解析】(1)求出集合A,B,由交集运算的定义,可得A∩B;(2)若存在 使得不等式g(x)≤﹣1成立,即存在 使得不等式﹣m≥ 成立,所以﹣m≥( min , 解得实数m的取值范围.
【考点精析】根据题目的已知条件,利用函数的最值及其几何意义的相关知识可以得到问题的答案,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上且以4为周期的奇函数,当x∈(0,2)时,f(x)=ln(x2﹣x+b),若函数f(x)在区间[﹣2,2]上的零点个数为5,则实数b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g(x)在[﹣ ]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第二届世界青年奥林匹克运动会,中国获37金,13银,13铜共63枚奖牌居奖牌榜首位,并打破十项青奥会记录.由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见.有网友为此进行了调查,在参加调查的2 548名男性公民中有1 560名持反对意见,2 452名女性公民中有1 200人持反对意见,在运用这些数据说明中国的奖牌数是否与中国进入体育强国有无关系时,用什么方法最有说服力(  )

A. 平均数与方差 B. 回归直线方程

C. 独立性检验 D. 概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 =1(a>0,b>0)的右焦点为F,直线y= x与双曲线相交于A、B两点.若AF⊥BF,则双曲线的渐近线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:

抽取顺序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得=xi=9.97,s==≈0.212,≈18.439,(xi)(i﹣8.5)=﹣2.78,

 其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

 (1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产

 过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地

 变大或变小).

 (2)一天内抽检零件中,如果出现了尺寸在﹣3s,+3s)之外的零件,就认为这条生产线在这一天

 的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

 ①从这一天抽检的结果看,是否需对当天的生产过程进行检查?

 ②在﹣3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的

 均值与标准差.(精确到0.01)

附:样本(xi,yi)(i=1,2,…,n)的相关系数r=≈0.09.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位: )的数据,如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回归方程

2)判断之间是正相关还是负相关;若该地1月份某天的最低气温为6,请用所求回归方程预测该店当日的营业额.

: 回归方程 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

分类

积极参加

班级工作

不太主动参

加班级工作

总计

学习积极性高

18

7

25

学习积极性一般

6

19

25

总计

24

26

50

(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)满足f(x+2)=2f(x),且当x∈[2,4]时, ,g(x)=ax+1,对x1∈[﹣2,0],x2∈[﹣2,1],使得g(x2)=f(x1),则实数a的取值范围为(
A.
B.
C.(0,8]
D.

查看答案和解析>>

同步练习册答案