精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数f(x)满足f(x+2)=2f(x),且当x∈[2,4]时, ,g(x)=ax+1,对x1∈[﹣2,0],x2∈[﹣2,1],使得g(x2)=f(x1),则实数a的取值范围为(
A.
B.
C.(0,8]
D.

【答案】D
【解析】解:∵f(x)在[2,3]上单调递减,在(3,4]上单调递增, ∴f(x)在[2,3]上的值域为[3,4],在(3,4]上的值域为( ],
∴f(x)在[2,4]上的值域为[3, ],
∵f(x+2)=2f(x),
∴f(x)= f(x+2)= f(x+4),
∴f(x)在[﹣2,0]上的值域为[ ],
当a>0时,g(x)为增函数,g(x)在[﹣2,1]上的值域为[﹣2a+1,a+1],
,解得a≥
当a<0时,g(x)为减函数,g(x)在[﹣2,1]上的值域为[a+1,﹣2a+1],
,解得a≤﹣
当a=0时,g(x)为常数函数,值域为{1},不符合题意;
综上,a的范围是a≥ 或a≤﹣
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=log3(x2+2x﹣8)的定义域为A,函数g(x)=x2+(m+1)x+m.
(1)若m=﹣4时,g(x)≤0的解集为B,求A∩B;
(2)若存在 使得不等式g(x)≤﹣1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中的更相减损法的思路与图相似.执行该程序框图,若输入的a,b分别为14,18,则输出的a=(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x(ex﹣1)﹣ax2(e=2.71828…是自然对数的底数).
(1)若 ,求函数f(x)的单调区间;
(2)若f(x)在(﹣1,0)内无极值,求a的取值范围;
(3)设n∈N* , x>0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 与双曲线 ,给出下列说法,其中错误的是(
A.它们的焦距相等
B.它们的焦点在同一个圆上
C.它们的渐近线方程相同
D.它们的离心率相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点P( ,1),直线l的参数方程为t为参数)若以O为极点,以Ox为极轴,选择相同的单位长度建立极坐标系,则曲线C的极坐标方程为ρ= cos(θ-

(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;

(Ⅱ)设直线l与曲线C相交于A,B两点,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二孩放开”政策的热度,现在某市进行调查,随机调查了50人,他们年齡的频数分布及支持“生育二孩”人数如下表:

年龄

[5,15)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65]

频数

5

10

15

10

5

5

支持生育二孩放开“政策

4

5

12

8

2

1

(1)由以上统计数据填下面2×2列联表,并判断是否有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有差异;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

支持

a=

c=

不支持

b=

d=

合计

(2)若对年龄在[5,15)的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二孩放开"政策的概率是多少?

0.050

0.010

0.001

k

3.841

6.635

10.828

: . [导学号113750266]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题为真命题的是(  )

A. “若a=b,则|a|=|b|”的逆命题

B. 命题“x0∈R,x0<2”的否定

C. “面积相等的三角形全等”的否命题

D. “若A∩B=B,则AB”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义方程f(x)=f′(x)的实数根x0为函数f(x)的“和谐点”.如果函数g(x)=x2(x∈(0,+∞)),h(x)=sin x+2cosx,φ(x)=ex+x的“和谐点”分别为a,b,c,则a,b,c的大小关系是(  )

A. a<b<c B. b<c<a

C. c<b<a D. c<a<b

查看答案和解析>>

同步练习册答案