精英家教网 > 高中数学 > 题目详情

【题目】某单位安排位员工在春节期间大年初一到初七值班,每人值班天,若位员工中的甲、乙排在相邻的两天,丙不排在初一,丁不排在初七,则不同的安排方案共有_______

【答案】1008

【解析】分析本题的要求比较多,有三个限制条件,甲、乙排在相邻两天可以把甲和乙看做一个元素,注意两元之间有一个排列,丙不排在初一,丁不排在初七,则可以甲乙排初一初二和初六、初七,丙排初七和不排初七,根据分类原理得到结果.

详解分两类

第一类:甲乙相邻排初一初二或初六、初七,这时先安排甲和乙,有然后排丙或丁,有种,剩下的四人全排有种,因此共有种方法;

第二类:甲乙相邻排中间,有当丙排在初七,则剩下的四人有种排法,若丙排在中间,则甲有种,初七就从剩下的三人中选一个,有剩下三人有所以共有

故共有种安排方案,故答案为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正四棱柱ABCD﹣A1B1C1D1中,AB= ,AA1=2,设四棱柱的外接球的球心为O,动点P在正方形ABCD的边上,射线OP交球O的表面于点M,现点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径长为(
A.
B.2 π
C.
D.4 π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 且4Sn=(an+1)2(n∈N+). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{ }的前n项和,证明: ≤Tn<1(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若 且sinC=cosA (Ⅰ)求角A、B、C的大小;
(Ⅱ)函数f(x)=sin(2x+A)+cos(2x﹣ ),求函数f(x)单调递增区间,指出它相邻两对称轴间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x2+ax﹣lnx(a∈R). (Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性;
(Ⅲ)若对任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+ )(x∈R),下面结论错误的是(
A.函数f(x)的最小正周期为π
B.函数f(x)是偶函数
C.函数f(x)的图象关于直线 对称
D.函数f(x)在区间[0, ]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1的左焦点F1的坐标为(﹣ ,0),F2是它的右焦点,点M是椭圆C上一点,△MF1F2的周长等于4+2
(1)求椭圆C的方程;
(2)过定点P(0,2)作直线l与椭圆C交于不同的两点A,B,且OA⊥OB(其中O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ﹣k( +lnx)(k为常数,e=2.71828…是自然对数的底数). (Ⅰ)当k≤0时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

查看答案和解析>>

同步练习册答案