精英家教网 > 高中数学 > 题目详情

【题目】分别求适合下列条件的标准方程:

1)实轴长为12,离心率为,焦点在x轴上的椭圆;

2)顶点间的距离为6,渐近线方程为的双曲线的标准方程。

【答案】(1) 椭圆的标准方程为;(2) 焦点在x轴上的双曲线的方程为,焦点在y轴上双曲线的方程为.

【解析】试题分析:(1)设椭圆的标准方程为,(ab0),由已知,2a=12e=,由此能求出椭圆的标准方程.(2)当双曲线焦点在x轴上时,设所求双曲线的方程为=1,由题意,得 ,由此能求出焦点在x轴上的双曲线的方程;同理可求当焦点在y轴上双曲线的方程.

(1)设椭圆的标准方程为由已知,

所以椭圆的标准方程为.

(2)当焦点在x轴上时,设所求双曲线的方程为=1

由题意,得   解得

所以焦点在x轴上的双曲线的方程为

同理可求当焦点在y轴上双曲线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求实数k的值;
(2)设g(x)=log4(a2x+a),若f(x)=g(x)有且只有一个实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x﹣2x+1+3,当x∈[﹣2,1]时,f(x)的最大值为m,最小值为n,
(1)若角α的终边经过点P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自变量x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是一个等差数列且a2+a8=﹣4a6=2

1)求{an}的通项公式;

2)求{an}的前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,则不等式xf(x﹣1)>0的解集是(
A.(﹣3,﹣1)
B.(﹣3,1)∪(2,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣1,0)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过上一点的切线的方程为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过点且斜率不为的直线交椭圆于两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且椭圆上任意一点到两个焦点的距离之和为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与椭圆相交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fk(x)=xk+bx+c(k∈N* , b,c∈R),g(x)=logax(a>0,a≠1).
(1)若b+c=1,且fk(1)=g( ),求a的值;
(2)若k=2,记函数fk(x)在[﹣1,1]上的最大值为M,最小值为m,求M﹣m≤4时的b的取值范围;
(3)判断是否存在大于1的实数a,使得对任意x1∈[a,2a],都有x2∈[a,a2]满足等式:g(x1)+g(x2)=p,且满足该等式的常数p的取值唯一?若存在,求出所有符合条件的a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数. 

(Ⅰ)若,证明:函数上的减函数;

(Ⅱ)若曲线在点处的切线与直线平行,求的值;

(Ⅲ)若,证明: (其中…是自然对数的底数).

查看答案和解析>>

同步练习册答案