精英家教网 > 高中数学 > 题目详情
已知y=lo
g
(2-ax)
a
是[0,1]上的减函数,则a的取值范围为(  )
A、(0,1)
B、(1,2)
C、(0,2)
D、[2,+∞)
考点:对数函数的单调区间
专题:函数的性质及应用
分析:本题必须保证:①使loga(2-ax)有意义,即a>0且a≠1,2-ax>0.②使loga(2-ax)在[0,1]上是x的减函数.由于所给函数可分解为y=logau,u=2-ax,其中u=2-ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=loga(2-ax)定义域的子集.
解答: 解:∵f(x)=loga(2-ax)在[0,1]上是x的减函数,
∴f(0)>f(1),
即loga2>loga(2-a).
a>1
2-a>0

∴1<a<2.
故答案为:C.
点评:本题综合了多个知识点,需要概念清楚,推理正确.(1)复合函数的单调性;(2)函数定义域,对数真数大于零,底数大于0,不等于1.本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于数列{an},如果对任意正整数n,总有不等式:
an+an+2
2
≤an+1成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中b=n2-6n+10.
则数列{an}中的第五项a5的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
2
=1的顶点、焦点分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点、顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-2ax+4在(-∞,2]上是减函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+
a
2x
-1
(a为实数)
(1)当a=0时,若函数y=g(x)为奇函数.当x>0时,g(x)=f(x).求y=g(x)的解析式.
(2)当a<0时,求关于x的方程f(x)=0的实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义域在R上的奇函数.若x≥0时f(x)=x2+2x,则f(-2)等于(  )
A、8B、4C、-8D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各式中最小值为2的是(  )
A、sinx+
1
sinx
,x∈(0,
π
2
)
B、
x2+3
x2+2
(x∈R)
C、ex+e-x(x∈R)
D、x+
1
x
(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A=[x|-1≤x<2},B={x|x-a≤0},若A⊆B,则实数a的取值范围是(  )
A、a≤2B、a≥-1
C、a>-1D、a≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

化简3
(-5)2
的结果为(  )
A、15
B、3
5
C、-3
5
D、-15

查看答案和解析>>

同步练习册答案