精英家教网 > 高中数学 > 题目详情
6.设2134与1455的最大公约数为m,则m化为三进制数为10121(3)

分析 利用“辗转相除法”、进位制方法即可得出.

解答 解:2134=1455+679,1455=679×2+97,679=97×7,
∴2134与1455的最大公约数为97,∴m=97.
用97连续除3取余数,可得:97化为三进制数=10121(3)
故答案为:10121(3)

点评 本题考查了“辗转相除法”、进位制方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1中,AB=AA1=2.若点M在△ABC所在平面上运动,且使得△AC1M的面积为1,则动点M的轨迹为(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用五种不同的颜色来涂如图所示的田字形区域,要求同一区域上用同一种颜色,相邻区域用不同的颜色(A与C、B与D不相邻).
(1)求恰好使用两种颜色完成涂色任务的概率;
(2)设甲、乙两人各自相互独立完成涂色任务,记他们所用颜色的种数差的绝对值为ξ,求ξ的分布列及数学期望E(ξ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),则$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{x}$(x>0),对于正数x1,x2,…,xn(n∈N+),记Sn=x1+x2+…+xn,如图,由点(0,0),(xi,0),(xi,f(xi)),(0,f(xi))构成的矩形的周长为Ci(i=1,2,…,n),都满足Ci=4Si(i=1,2,…,n).
(Ⅰ)求x1
(Ⅱ)猜想xn的表达式(用n表示),并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,过点F1的直线l交椭圆于A、B两点,|AB|的最小值为3,且△ABF2的周长为8.
(Ⅰ)求椭圆的方程;
(Ⅱ)点A关于x轴的对称点为A′,直线A′B交x轴于点M,求△ABM面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用数学归纳法证明:当n≥2,n∈N时,$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{{n}^{2}}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AE=1,AB=2,CD=3,E,F分别为AB,CD上得点,以EF为轴将正方形ADFE向上翻折,使平面ADFE与平面BEFC垂直.如图2.
(1)若点P在线段BD上,使得FP⊥平面BDC,求FP的长;
(2)求多面体AEBDFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,若sin(A+B)=$\frac{1}{3}$,a=3,c=4,则sinA=(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案