精英家教网 > 高中数学 > 题目详情
7.已知点F(0,1)为抛物线x2=2py的焦点.
(1)求抛物线C的方程;
(2)点A、B、C是抛物线上三点且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,求△ABF面积的最大值.

分析 (1)根据条件容易求出p=2,从而得出抛物线C的方程为x2=4y;
(2)可设$A({x}_{1},\frac{{{x}_{1}}^{2}}{4}),B({x}_{2},\frac{{{x}_{2}}^{2}}{4}),C({x}_{3},\frac{{{x}_{3}}^{2}}{4})$,并设直线AB交y轴于D(0,yD),并可求得${y}_{D}=-\frac{{x}_{1}{x}_{2}}{4}$.由$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=\overrightarrow{0}$即可得出${x}_{1}+{x}_{2}=-{x}_{3},{{x}_{1}}^{2}+{{x}_{2}}^{2}=12-{{x}_{3}}^{2}$,进而得到${x}_{1}{x}_{2}={{x}_{3}}^{2}-6$,由${S}_{△ABF}=\frac{1}{2}|1-{y}_{D}||{x}_{2}-{x}_{1}|$即可得到${{S}^{2}}_{△ABF}=\frac{3}{64}({{x}_{3}}^{2}-2)^{2}(8-{{x}_{3}}^{2})$,这样设$t={{x}_{3}}^{2}≥0$,$y=\frac{3}{64}(t-2)^{2}(8-t)$,根据导数符号即可求出y的最大值,即得出△ABF面积的最大值.

解答 解:(1)由题意$\frac{p}{2}=1$;
∴p=2;
∴抛物线C的方程为x2=4y;
(2)令$A({x}_{1},\frac{{{x}_{1}}^{2}}{4}),B({x}_{2},\frac{{{x}_{2}}^{2}}{4}),C({x}_{3},\frac{{{x}_{3}}^{2}}{4})$,
不妨设直线AB与y轴交于点D(0,yD),则:
$\frac{\frac{{{x}_{2}}^{2}}{4}-\frac{{{x}_{1}}^{2}}{4}}{{x}_{2}-{x}_{1}}=\frac{{y}_{D}-\frac{{{x}_{1}}^{2}}{4}}{0-{x}_{1}}$;
∴${y}_{D}=-\frac{{x}_{1}{x}_{2}}{4}$;
又$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=\overrightarrow{0}$;
∴$({x}_{1}+{x}_{2}+{x}_{3},\frac{{{x}_{1}}^{2}}{4}+\frac{{{x}_{2}}^{2}}{4}+\frac{{{x}_{3}}^{2}}{4}-3)=(0,0)$;
∴x1+x2+x3=0,$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}+{{x}_{3}}^{2}}{4}=3$;
从而${x}_{1}+{x}_{2}=-{x}_{3},{{x}_{1}}^{2}+{{x}_{2}}^{2}=12-{{x}_{3}}^{2}$;
∴$2{x}_{1}{x}_{2}=({x}_{1}+{x}_{2})^{2}-({{x}_{1}}^{2}+{{x}_{2}}^{2})$=$2{{x}_{3}}^{2}-12$;
∴${x}_{1}{x}_{2}={{x}_{3}}^{2}-6$;
又${S}_{△ABF}=\frac{1}{2}|1-{y}_{D}||{x}_{2}-{x}_{1}|$;
∴${{S}^{2}}_{△ABF}=\frac{1}{4}(1+\frac{{x}_{1}{x}_{2}}{4})^{2}({{x}_{1}}^{2}+{{x}_{2}}^{2}-2{x}_{1}{x}_{2})$
=$\frac{1}{64}(4+{{x}_{3}}^{2}-6)^{2}(12-{{x}_{3}}^{2}-2{{x}_{3}}^{2}+12)$
=$\frac{1}{64}({{x}_{3}}^{2}-2)^{2}(24-3{{x}_{3}}^{2})$
=$\frac{3}{64}({{x}_{3}}^{2}-2)^{2}(8-{{x}_{3}}^{2})$;
令$t={{x}_{3}}^{2}≥0$,$y=\frac{3}{64}(t-2)^{2}(8-t)$,$y′=\frac{9}{64}(t-2)(6-t)$;
t∈[0,2)时,y′<0,t∈(2,6)时,y′>0,t∈(6,+∞)时,y′<0;
且当t=0时y=$\frac{3}{2}$,当t=6时,$y=\frac{3}{2}$;
∴${y}_{max}=\frac{3}{2}$;
∴△ABF面积的最大值为$\frac{\sqrt{6}}{2}$.

点评 考查抛物线的标准方程,抛物线上点的坐标的设法,根据点的坐标求直线的斜率,向量坐标的加法运算,以及三角形的面积公式,根据导数符号求函数最值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满8局时停止.设甲在每局中获胜的概率为p(p>$\frac{1}{2}$),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为$\frac{5}{8}$.
(Ⅰ)求p的值;
(Ⅱ)设ξ表示比赛停止时比赛的局数,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xoy中,已知圆心在第二象限,半径为2$\sqrt{2}$的圆C与直线y=x相切于坐标原点O,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1(a>0)与圆C的一个交点到椭圆的两焦点的距离之和为10.
(1)求圆C的方程;
(2)若圆C上存在一点Q(异于坐标原点),满足点Q到椭圆右焦点F的距离等于OF的长,试求出点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个长轴顶点分别为A、B,M为椭圆上一点(异于A、B),则有结论:KMA•KMB=-$\frac{{b}^{2}}{{a}^{2}}$,现在有双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上的点A(-3,0).点B(3,0).P为双曲线一点(P不在x轴上)那么KPA•KPB=
A.$\frac{16}{9}$B.$\frac{9}{16}$C.-$\frac{16}{9}$D.-$\frac{9}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax-2$\sqrt{4-{a}^{x}}$-1(a>1).
(1)若a=2,求函数f(x)的定义域、值域;
(2)若函数f(x)满足:对于任意x∈(-∞,1],都有f(x)+1≤0.试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设抛物线y2=2px(p>0)的焦点为F,过F且斜率为$\sqrt{3}$的直线交抛物线于A,B两点,若线段AB的垂直平分线与 x轴交于点M(11,0),则p=(  )
A.2B.3C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ln(x+1),g(x)=kx(k∈R).
(1)证明:当x>0时,f(x)<x;
(2)证明:当k<1时,存在x0>0,使得对任意的x∈(0,x0),恒有f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点P为圆x2+y2=25上任意一点,过P作x轴的垂线,垂足为H,且满足$\overrightarrow{MH}$=$\frac{3}{5}\overrightarrow{PH}$,若M的轨迹为曲线E.
(1)求h(x)=f(x)-g(x)的方程;
(2)设过曲线E左焦点的两条弦为MN、PQ,弦MN,PQ所在直线的斜率分别为k1、k2,当k1k2=1时,判断$\frac{1}{|MN|}$+$\frac{1}{|PQ|}$是否为定值,若是,求出该定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合M={(x,y)|3x-4y=$\frac{1}{27}$,x,y∈R},N={(x,y)|log${\;}_{\sqrt{3}}}$(x-y)=2,x,y∈R},则M∩N={(5,2)}.

查看答案和解析>>

同步练习册答案