精英家教网 > 高中数学 > 题目详情
16.已知点P为圆x2+y2=25上任意一点,过P作x轴的垂线,垂足为H,且满足$\overrightarrow{MH}$=$\frac{3}{5}\overrightarrow{PH}$,若M的轨迹为曲线E.
(1)求h(x)=f(x)-g(x)的方程;
(2)设过曲线E左焦点的两条弦为MN、PQ,弦MN,PQ所在直线的斜率分别为k1、k2,当k1k2=1时,判断$\frac{1}{|MN|}$+$\frac{1}{|PQ|}$是否为定值,若是,求出该定值,若不是,说明理由.

分析 (1)设P点坐标为(x0,y0),M点坐标为(x,y),由$\overrightarrow{MH}=\frac{3}{5}\overrightarrow{PH}$得,$\left\{{\begin{array}{l}{x={x_0}}\\{y=\frac{3}{5}{y_0}}\end{array}}\right.$,把P点代入x2+y2=25即可得出.
(2)由题设知,F1(-4,0),则MN:y=k1(x+4),PQ:y=k2(x+4),将MN与C的方程联立消y得$(25{k}_{1}^{2}+9)$x2+200${k}_{1}^{2}$x+$400{k}_{1}^{2}$-225=0,设M(x1,y1),N(x2,y2),则$|MN|=\sqrt{{{({x_1}-{x_2})}^2}+{{({y_1}-{y_2})}^2}}=\sqrt{(1+k_1^2){{({x_1}-{x_2})}^2}}$=$\sqrt{(1+{k}_{1}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$.同理:|PQ|,k1k2=1,代入即可得出.

解答 解:(1)设P点坐标为(x0,y0),M点坐标为(x,y),
由$\overrightarrow{MH}=\frac{3}{5}\overrightarrow{PH}$得,$\left\{{\begin{array}{l}{x={x_0}}\\{y=\frac{3}{5}{y_0}}\end{array}}\right.$,而P点在x2+y2=25上,代入得$\frac{x^2}{25}+\frac{y^2}{9}=1$.
(2)由题设知,F1(-4,0),则MN:y=k1(x+4),PQ:y=k2(x+4)
将MN与C的方程联立消y得$(25{k}_{1}^{2}+9)$x2+200${k}_{1}^{2}$x+$400{k}_{1}^{2}$-225=0,
设M(x1,y1),N(x2,y2),则x1、x2是“*”的二根,
则$\left\{{\begin{array}{l}{{x_1}+{x_2}=-\frac{200k_1^2}{25k_1^2+9}}\\{{x_1}{x_2}=\frac{400k_1^2-225}{25k_1^2+9}}\end{array}}\right.$,
则$|MN|=\sqrt{{{({x_1}-{x_2})}^2}+{{({y_1}-{y_2})}^2}}=\sqrt{(1+k_1^2){{({x_1}-{x_2})}^2}}$=$\sqrt{(1+k_1^2)[{{({x_1}+{x_2})}^2}-4{x_1}{x_2}]}=\sqrt{(1+k_1^2)•\frac{400k_1^4-4(400k_1^2-225)(25k_1^2+9)}{{{{(25k_1^2+9)}^2}}}}$=$\frac{90(1+k_1^2)}{25k_1^2+9}$.
同理:$|PQ|=\frac{90(1+k_2^2)}{25k_2^2+9}$
∵k1k2=1∴$\frac{1}{|MN|}+\frac{1}{|PQ|}=\frac{1}{{\frac{90(1+k_1^2)}{25k_1^2+9}}}+\frac{1}{{\frac{90(1+k_2^2)}{25k_2^2+9}}}$
=$\frac{25k_1^2+9}{90(1+k_1^2)}+\frac{25k_2^2+9}{90(1+k_2^2)}=\frac{(25k_1^2+9)(1+k_2^2)+(25k_2^2+9)(1+k_1^2)}{90(1+k_1^2)(1+k_2^2)}$=$\frac{{18+34k_1^2+34k_2^2+50{{({k_1}{k_2})}^2}}}{{90[1+k_1^2+k_2^2+{{(kk)}^2}]}}=\frac{68+34k_1^2+34k_2^2}{90(2+k_1^2+k_2^2)}$=$\frac{34(2+k_1^2+k_2^2)}{90(2+k_1^2+k_2^2)}=\frac{17}{45}$,
∴$\frac{1}{|MN|}+\frac{1}{|PQ|}$为定值,值为$\frac{17}{45}$.

点评 本题考查了直线与椭圆相交弦长问题、圆的方程、一元二次方程的根与系数的关系、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图所示,AB=AC=1,DC=2BD,DE=EA,cos∠BAC=$\frac{1}{3}$,则BE=(  )
A.$\frac{59}{108}$B.$\frac{43}{108}$C.$\frac{\sqrt{177}}{18}$D.$\frac{\sqrt{129}}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点F(0,1)为抛物线x2=2py的焦点.
(1)求抛物线C的方程;
(2)点A、B、C是抛物线上三点且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,求△ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点($\sqrt{2}$,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设M(x,y)是椭圆C上的动点,P(p,0)是x轴上的定点,求|MP|的最小值及取最小值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数y=ax3+3x2+3x+3在x=1处取得极值,则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过点P(2,1)作直线l分别与x,y轴正半轴交于A、B两点.
(1)当△AOB面积最小时,求直线l的方程;
(2)当|OA|+|OB|取最小值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).
(1)证明{an+an-1}与{an-3an-1}分别都是等比数列并求出数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知幂函数f(x)的图象过(-$\sqrt{2}$,2),一次函数g(x)的图象过A(-1,1),B(3,9).
(Ⅰ)求函数f(x)和g(x)的解析式;
(Ⅱ)当x为何值时,①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在(0,+∞)上的函数f(x)为增函数,且满足 f(2)=1,f(xy)=f(x)+f(y);
(1)求f(1)、f(4)的值;
(2)解关于x的不等式f(x)<2+f(x-3).

查看答案和解析>>

同步练习册答案