分析 (1)根据an=2an-1+3an-2(n≥3).即可得到an+an-1=3(an-1+an-2),an-3an-1=-(an-1-3an-2),利用等比数列的定义,证明即可;
(2)由(1),求出an=$\frac{1}{4}$×[7•3n-1+13•(-1)n-1],再根据等比数列的求和公式计算即可.
解答 解:(1)a1=5,a2=2,an=2an-1+3an-2(n≥3),
∴an+an-1=3an-1+3an-2=3(an-1+an-2),
∵a1=5,a2=2,
∴a2+a1=5+2=7,
∴数列{an+an-1}是以7为首项,3为公比的等比数列,
∵an=2an-1+3an-2,
∴an-3an-1=-(an-1-3an-2),
∵a1=5,a2=2,
∴a2-3a1=2-15=-13,
∴数列{an-3an-1}是以-13为首项,-1为公比的等比数列;
(2)由(1)知数列{an+an-1}是以7为首项,3为公比的等比数列,数列{an-3an-1}是以-13为首项,-1为公比的等比数列,
∴an+an-1=7•3n-2,an-3an-1=-13•(-1)n-2,
∴an=$\frac{1}{4}$×[7•3n-1+13•(-1)n-1],
∴Sn=$\frac{1}{4}$[$\frac{7(1-{3}^{n})}{1-3}$+$\frac{13(1-(-1)^{n})}{1-(-1)}$]=$\frac{3}{4}$+$\frac{7}{8}$×3n-$\frac{1}{8}$×(-1)n.
点评 证明数列是等比数列,定义是根本,求数列的通项,正确运用等比数列的通项是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{3}≤k≤0$ | B. | $k≤-\frac{{\sqrt{3}}}{3}$或$k=-\frac{1}{3}$ | C. | $-\frac{{\sqrt{3}}}{3}<K<-\frac{1}{3}$ | D. | $-\frac{{\sqrt{3}}}{3}≤k≤-\frac{1}{3}$或k=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 5 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com