精英家教网 > 高中数学 > 题目详情
18.若直线y=2x+b与椭圆$\frac{{x}^{2}}{4}$+y2=1无公共点,则b的取值范围为b$<-2\sqrt{2}$或b$>2\sqrt{2}$.

分析 联立直线与椭圆方程,通过判别式小于0 求解即可.

解答 解:由题意可得:$\left\{\begin{array}{l}{y=2x+b}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,可得:8x2+4bx+b2-4=0,
直线y=2x+b与椭圆$\frac{{x}^{2}}{4}$+y2=1无公共点,
所以:△=16b2-32(b2-4)<0,
-b2+8<0,解得b$<-2\sqrt{2}$或b$>2\sqrt{2}$.
故答案为:b$<-2\sqrt{2}$或b$>2\sqrt{2}$.

点评 本题考查直线与椭圆的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).
(1)证明{an+an-1}与{an-3an-1}分别都是等比数列并求出数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个圆锥的侧面展开图是一个$\frac{1}{4}$的圆面,则这个圆锥的表面积和侧面积的比是(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在(0,+∞)上的函数f(x)为增函数,且满足 f(2)=1,f(xy)=f(x)+f(y);
(1)求f(1)、f(4)的值;
(2)解关于x的不等式f(x)<2+f(x-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列对应f是集合A到集合B的函数的是(  )
A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方
C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=alnx-ax-3(a≠0).
(1)讨论f(x)的单调性;
(2)若f(x)+(a+1)x+4-e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);
(3)求证:ln($\frac{1}{2^2}$+1)+ln($\frac{1}{3^2}$+1)+ln($\frac{1}{4^2}$+1)+…+ln($\frac{1}{n^2}$+1)<1(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a,b为正实数,向量$\overrightarrow{m}$=(a,a-4),向量$\overrightarrow{n}$=(b,1-b),若$\overrightarrow{m}$∥$\overrightarrow{n}$,则a+b最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,ABC-A1B1C1是底面边长为2,高为$\frac{\sqrt{3}}{2}$的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).
(Ⅰ)证明:PQ∥A1B1
(Ⅱ)当CF⊥平面ABQP时,在图中作出点C在平面ABQP内的正投影F(说明作法及理由),并求四面体CABF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,则该椭圆的焦点坐标为(  )
A.(-$\sqrt{5}$,0),($\sqrt{5}$,0)B.(0,-$\sqrt{5}$),(0,$\sqrt{5}$)C.(-$\sqrt{13}$,0),($\sqrt{13}$,0)D.(0,-$\sqrt{13}$),(0,$\sqrt{13}$)

查看答案和解析>>

同步练习册答案