分析 联立直线与椭圆方程,通过判别式小于0 求解即可.
解答 解:由题意可得:$\left\{\begin{array}{l}{y=2x+b}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,可得:8x2+4bx+b2-4=0,
直线y=2x+b与椭圆$\frac{{x}^{2}}{4}$+y2=1无公共点,
所以:△=16b2-32(b2-4)<0,
-b2+8<0,解得b$<-2\sqrt{2}$或b$>2\sqrt{2}$.
故答案为:b$<-2\sqrt{2}$或b$>2\sqrt{2}$.
点评 本题考查直线与椭圆的位置关系的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A={-1,0,1},B={0,1},f:A中的数平方 | B. | A={0,1},B={-1,0,1},f:A中的数开方 | ||
| C. | A=Z,B=Q,f:A中的数取倒数 | D. | A=R,B={正实数},f:A中的数取绝对值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\sqrt{5}$,0),($\sqrt{5}$,0) | B. | (0,-$\sqrt{5}$),(0,$\sqrt{5}$) | C. | (-$\sqrt{13}$,0),($\sqrt{13}$,0) | D. | (0,-$\sqrt{13}$),(0,$\sqrt{13}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com