精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=alnx-ax-3(a≠0).
(1)讨论f(x)的单调性;
(2)若f(x)+(a+1)x+4-e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);
(3)求证:ln($\frac{1}{2^2}$+1)+ln($\frac{1}{3^2}$+1)+ln($\frac{1}{4^2}$+1)+…+ln($\frac{1}{n^2}$+1)<1(n≥2,n∈N*).

分析 (1)求导f′(x)=$\frac{a(1-x)}{x}$(x>0),从而判断函数的单调性;
(2)令F(x)=alnx-ax-3+(a+1)x+4-e=alnx+x+1-e,从而求导F′(x)=$\frac{x+a}{x}$,再由导数的正负讨论确定函数的单调性,从而求函数的最大值,从而化恒成立问题为最值问题即可;
(3)令a=-1,根据函数的单调性得到lnx<x-1对一切x∈(1,+∞)恒成立,放缩法得到ln($\frac{1}{{n}^{2}}$+1)<$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,求和即可.

解答 解:(1)f′(x)=$\frac{a(1-x)}{x}$(x>0),
当a>0时,f(x)的单调增区间为(0,1],单调减区间为[1,+∞);
当a<0时,f(x)的单调增区间为[1,+∞),单调减区间为(0,1];
(2)令F(x)=alnx-ax-3+(a+1)x+4-e=alnx+x+1-e,则F′(x)=$\frac{x+a}{x}$,
若-a≤e,即a≥-e,
F(x)在[e,e2]上是增函数,
F(x)max=F(e2)=2a+e2-e+1≤0,
a≤$\frac{e-1{-e}^{2}}{2}$,无解.
若e<-a≤e2,即-e2≤a<-e,
F(x)在[e,-a]上是减函数;在[-a,e2]上是增函数,
F(e)=a+1≤0,即a≤-1.
F(e2)=2a+e2-e+1≤0,即a≤$\frac{e-1{-e}^{2}}{2}$,
∴-e2≤a≤$\frac{e-1{-e}^{2}}{2}$;
若-a>e2,即a<-e2
F(x)在[e,e2]上是减函数,
F(x)max=F(e)=a+1≤0,即a≤-1,
∴a<-e2
综上所述,a≤$\frac{e-1{-e}^{2}}{2}$.
(3)令a=-1,(或a=1),此时f(x)=-lnx+x-3,
∴f(1)=-2,由(1)f(x)=-lnx+x-3在[1,+∞)递增,
∴x∈(1,+∞)时,f(x)>f(1),
即-lnx+x-1>0,lnx<x-1对一切x∈(1,+∞)恒成立,
∵n≥2,n∈N*
则有ln($\frac{1}{{n}^{2}}$+1)<$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
∴ln($\frac{1}{2^2}$+1)+ln($\frac{1}{3^2}$+1)+ln($\frac{1}{4^2}$+1)+…+ln($\frac{1}{n^2}$+1)
<(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)=1-$\frac{1}{n}$<1.

点评 本题考查了导数的综合应用,放缩法证明不等式,裂项求和法等的应用,同时考查了恒成立问题及分类讨论的数学思想应用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$,且函数g(x)=f(x)-kx+2k有三个不同的零点,则实数k的取值范围是(  )
A.$-\frac{{\sqrt{3}}}{3}≤k≤0$B.$k≤-\frac{{\sqrt{3}}}{3}$或$k=-\frac{1}{3}$C.$-\frac{{\sqrt{3}}}{3}<K<-\frac{1}{3}$D.$-\frac{{\sqrt{3}}}{3}≤k≤-\frac{1}{3}$或k=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.集合{0,1}的真子集有(  )
A.2个B.3个C.4个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=-2x2+1,则f(-1)=(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若直线y=2x+b与椭圆$\frac{{x}^{2}}{4}$+y2=1无公共点,则b的取值范围为b$<-2\sqrt{2}$或b$>2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥0\end{array}\right.$,则z=x-2y的最小值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=3时,求函数f(x)的不动点;
(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=-x+$\frac{2a}{5{a}^{2}-4a+1}$的图象上,求b的最小值.(参考公式:A(x1,y1),B(x2,y2)的中点坐标为($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$))

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$f(x)=\frac{1}{2}{x^2}+aln(x+1)(其中a为常数)$有两个极值点x1,x2且x1<x2
(1)求a取值范围并讨论函数f(x)的单调性;
(2)求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1、F2为双曲线:$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{20}$=1的左、右焦点,过F2的直线交双曲线于A,B两点,则△F1AB周长的最小值为(  )
A.8B.16C.20D.36

查看答案和解析>>

同步练习册答案