精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ln(x+1),g(x)=kx(k∈R).
(1)证明:当x>0时,f(x)<x;
(2)证明:当k<1时,存在x0>0,使得对任意的x∈(0,x0),恒有f(x)>g(x).

分析 (1)构造函数F(x)=f(x)-x=ln(1+x)-x,x∈(0,+∞),利用函数F(x)的单调性,只需求出F(x)值域即可;
(2)构造函数G(x)=f(x)-g(x)=ln(1+x)-kx,x∈(0,+∞),利用其单调性,讨论其值域情况即可.

解答 解:(1)令F(x)=f(x)-x=ln(1+x)-x,x∈(0,+∞),
则有F′(x)=$\frac{1}{1+x}$-1=-$\frac{x}{1+x}$.…(3分)
当x∈(0,+∞)时,F′(x)<0,所以F(x)在(0,+∞)上单调递减;…(6分)
故当x>0时,F(x)<F(0)=0,即当x>0时,f(x)<x.…(8分)
(2)令G(x)=f(x)-g(x)=ln(1+x)-kx,x∈(0,+∞),
则有G′(x)=$\frac{1}{1+x}$-k=$\frac{-kx+(1-k)}{1+x}$.…(10分)
当k≤0时G′(x)>0,所以G(x)在(0,+∞)上单调递增,
G(x)>G(0)=0,故对任意正实数x0均满足题意.…(13分)
当0<k<1时,令G′(x)=0,得x=$\frac{1-k}{k}$=$\frac{1}{k}$-1>0.
取x0=$\frac{1}{k}$-1,对任意x∈(0,x0),恒有G′(x)>0,…(16分)
从而G(x)在(0,x0)上单调递增,G(x)>G(0)=0,即f(x)>g(x).…(18分)

点评 本题考查了函数中的证明恒成立不等式,构造新函数,利用新函数的单调性处理的基本方法必须掌握,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在三棱锥A-BCD中,AB⊥平面BCD,AC=AD=2,BC=BD=1,点E是线段AD的中点.
(Ⅰ)如果CD=$\sqrt{2}$,求证:平面BCE⊥平面ABD;
(Ⅱ)如果∠CBD=$\frac{2π}{3}$,求直线CE和平面BCD所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知四边形ABCD,AB⊥AC,∠ACB=30°,∠ACD=15°,∠DBC=30°,且AB=1,则CD的长为$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点F(0,1)为抛物线x2=2py的焦点.
(1)求抛物线C的方程;
(2)点A、B、C是抛物线上三点且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,求△ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{4}$+y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1,y1),B(x2,y2)满足$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$.
(1)求证:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点($\sqrt{2}$,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设M(x,y)是椭圆C上的动点,P(p,0)是x轴上的定点,求|MP|的最小值及取最小值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数y=ax3+3x2+3x+3在x=1处取得极值,则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).
(1)证明{an+an-1}与{an-3an-1}分别都是等比数列并求出数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个圆锥的侧面展开图是一个$\frac{1}{4}$的圆面,则这个圆锥的表面积和侧面积的比是(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.$\frac{6}{5}$

查看答案和解析>>

同步练习册答案