精英家教网 > 高中数学 > 题目详情

【题目】已知中心在坐标原点的椭圆经过点,且点为其右焦点.

)求椭圆的标准方程;

)是否存在平行于的直线,使得直线与椭圆有公共点,且直线的距离等于4?若存在,求出直线的方程;若不存在,请说明理由.

【答案】(Ⅰ)(Ⅱ)不存在.

【解析】试题分析:(Ⅰ)设出椭圆的标准方程,利用椭圆的定义和焦点坐标求出有关参数值,进而得到椭圆的标准方程;(Ⅱ)先假设存在符合题意的直线,并设出直线方程,联立直线与椭圆的方程,得到关于的一元二次方程,利用判别式为正和点到直线的距离公式进行求解.

试题解析:()依题意,可设椭圆的方程为,且可知左焦点为

从而有,解得,又.

故椭圆的标准方程为.

)假设存在符合题意的直线,其方程为.

.

直线与椭圆有公共点,,解得.

另一方面,直线的距离等于4,可得,从而.

由于符合题意的直线不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,点

)求 的方程;

)直线不过原点O且不平行于坐标轴,有两个交点,线段的中点为,证明:的斜率与直线的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列是首项为0的递增数列,,满足:对于任意的总有两个不同的根,则的通项公式为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为已知

I)设,证明数列是等比数列;

II)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙长为2

表示墙的长;

假设所建熊猫居室的墙壁造价在墙壁高度一定的前提下为每米1000元,请将墙壁的总造价表示为的函数;

为何值时,墙壁的总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,由此得到样本的重量频率分布直方图(如图).

的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;

从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. 以直方图中的频率作为概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点在抛物线上,过点垂直于轴,垂足为,设.

求点的轨迹的方程;

设点,过点的直线交轨迹两点,直线的斜率分别为,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为方便市民休闲观光,市政府计划在半径为200,圆心角为的扇形广场内(如图所示),沿边界修建观光道路,其中分别在线段上,且两点间距离为定长.

1)当时,求观光道段的长度;

2)为提高观光效果,应尽量增加观光道路总长度,试确定图中两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数的导函数为且满足恒成立若非负实数满足的取值范围为

查看答案和解析>>

同步练习册答案