精英家教网 > 高中数学 > 题目详情
20.已知复数z=$\frac{2i}{1+i}$,复数z对应的点为Z,O为坐标原点,则向量$\overrightarrow{OZ}$的坐标为(  )
A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数z=$\frac{2i}{1+i}$=$\frac{2i(1-i)}{(1+i)(1-i)}$=i+1,
则向量$\overrightarrow{OZ}$的坐标为(1,1).
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.对于两个复数$α=\frac{1}{2}+\frac{{\sqrt{3}}}{2}i,β=-\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$,有下列四个结论:
①αβ=1;
②$\frac{α}{β}=1$;
③$|{\frac{α}{β}}|=1$;
④α22=1
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点M(x,y)在圆x2+(y-2)2=1上运动,则$\frac{xy}{{4{x^2}+{y^2}}}$的取值范围是(  )
A.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)B.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)∪{0}C.$[{-\frac{1}{4},0})∪({0,\frac{1}{4}}]$D.$[{-\frac{1}{4},\frac{1}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对任意的正数x,都存在两个不同的正数y,使x2(lny-lnx)-ay2=0成立,则实数a的取值范围为(  )
A.(0,$\frac{1}{2e}$)B.(-∞,$\frac{1}{2e}$)C.($\frac{1}{2e}$,+∞)D.($\frac{1}{2e}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={x|y=lg(x-2),N={x|x≥a},若集合M∩N=N,则实数a的取值范围是(  )
A.(2,+∞)B.[2,+∞)C.(-∞,0)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示GH,MN是异面直线的图形的序号为(  )
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,正方体ABCD-A1B1C1D1中,E,F,H分别为A1B1,B1C1,CC1的中点.
(Ⅰ)证明:BE⊥AH;
(Ⅱ)在棱D1C1上是否存在一点G,使得AG∥平面BEF?若存在,求出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$z=\frac{2+i}{-2i+1}$(i是虚数单位),则复数z的实部是(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.8+2πB.8+3πC.10+2πD.10+3π

查看答案和解析>>

同步练习册答案