精英家教网 > 高中数学 > 题目详情

【题目】一元线性同余方程组问题最早可见于中国南北朝时期(公元世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为,当时,符合条件的共有( )

A. B. C. D.

【答案】C

【解析】

由题设a=3m+2=5n+3,m,n,3m=5n+1,对m讨论求解即可

由题设a=3m+2=5n+3,m,n,3m=5n+1

m=5k,n不存在;

m=5k+1n不存在

m=5k+2,n=3k+1,满足题意

m=5k+3,n不存在;

m=5k+4,n不存在;

2a=15k+8≤2019,,kZ,k=0,1,2…134,135

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】公历日为我国传统清明节,清明节扫墓我们都要献鲜花,某种鲜花的价格会随着需求量的增加而上升.一个批发市场向某地商店供应这种鲜花,具体价格统计如下表所示

日供应量(束)

单位(元)

(I)根据上表中的数据进行判断,函数模型哪一个更适合于体现日供应量与单价之间的关系;(给出判断即可,不必说明理由)

(II)根据(I)的判断结果以及参考数据,建立关于的回归方程;

(III)该地区有个商店,其中个商店每日对这种鲜花的需求量在束以下,个商店每日对这种鲜花的需求量在束以上,则从这个商店个中任取个进行调查,求恰有个商店对这种鲜花的需求量在束以上的概率.

参考公式及相关数据:对于一组数据,...,,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为,第二关每次闯过的概率均为.假设他不放弃每次闯关机会,且每次闯关互不影响.

(1)求甲恰好闯关3次才闯关成功的概率;

(2)记甲闯关的次数为,求随机变量的分布列和期望.。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核心素养与抽象能力(指标)、推理能力(指标)、建模能力(指标)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据

学生编号

(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;

(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,点E为棱AD的中点.

1)求证:平面ABCD

2)求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一元线性同余方程组问题最早可见于中国南北朝时期(公元世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为,当时, 符合条件的共有_____个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD90°,ADAP4ABBC2NAD的中点.

1)求异面直线PBCD所成角的余弦值;

2)点M在线段PC上且满足,直线MN与平面PBC所成角的正弦值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求在点处的切线方程;

(Ⅱ)若,求函数的单调区间;

(Ⅲ)若对任意的上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,二面角的中点,点上,且

1)求证:四边形为直角梯形;

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案