精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系中,直线l经过点P(1,1),倾斜角α=$\frac{π}{6}$,现以平面直角坐标系中的坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρsin2θ=8cosθ.
(1)写出直线l 的参数方程及曲线C 的直角坐标方程;
(2)设直线l与曲线C相交于 A、B两点,求|PA|•|PB|的值.

分析 (1)由直线l经过点P(1,1),倾斜角α=$\frac{π}{6}$,即可得出直线的参数方程.曲线C 的极坐标方程为ρsin2θ=8cosθ,即ρ2sin2θ=8ρcosθ.把x=ρcosθ,y=ρsinθ,代入即可得出直角坐标方程.
(2)将直线l的参数方程$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$(t为参数)代入y2=8x中,可得得,${t^2}+4(1-4\sqrt{3})t-28=0$.设点A,B对应的参数分别为t1,t2,由t的几何意义可知,|PA|•|PB|=|t1||t2|=|t1t2|.

解答 解:(1)直线l的参数方程为$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$(t为参数);
曲线C的直角坐标方程为y2=8x
(2)将直线l的参数方程$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$(t为参数)代入y2=8x中,得$(1+\frac{1}{2}t{)^2}=8(1+\frac{{\sqrt{3}}}{2}t)$
整理得,${t^2}+4(1-4\sqrt{3})t-28=0$
设点A,B对应的参数分别为t1,t2,则${t_1}+{t_2}=4(4\sqrt{3}-1),{t_1}{t_2}=-28$
由t的几何意义可知,|PA|•|PB|=|t1||t2|=|t1t2|=28

点评 本题考查了极坐标与直角坐标方程的互化、抛物线的参数方程与直线参数方程的应用、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=x2lnx,且f(1)=-1,则f(x)的最小值为(  )
A.-eB.-$\frac{e}{2}$C.$\frac{e}{2}$D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,E为BC的中点,AB=1,AD=2,PA=2.
(1)证明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在极坐标系中,点P(2,$\frac{11π}{6}$)到直线ρsin(θ-$\frac{π}{6}$)=1的距离等于(  )
A.1B.2C.3D.$1+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD.为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进25m到达B处,又测得∠DBC=45°.根据以上数据计算可得cosθ=$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x∈R,下列不等式中正确的是(  )
A.2x<3xB.$\frac{1}{{{x^2}-x+1}}$>$\frac{1}{{{x^2}+x+1}}$
C.$\frac{1}{{{x^2}+1}}$>$\frac{1}{{{x^2}+2}}$D.2|x|<x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=lnx-2x3与g(x)=2x3-ax,若f(x)的图象上存在点A满足它关于y轴的对称点B落在g(x)的图象上,则实数a的取值范围是a≤$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y满足不等式组$\left\{\begin{array}{l}{2x-y≤1}\\{x+y≥2}\\{y-x≤2}\end{array}\right.$,则z=2y+x的最小值为(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex+m-lnx.
(I) 设x=1是函数f(x)的极值点,求证:ex-elnx≥e;
(II) 设x=x0是函数f(x)的极值点,且f(x)≥0恒成立,求m的取值范围.(其中常数a满足alna=1).

查看答案和解析>>

同步练习册答案