精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=lnx-2x3与g(x)=2x3-ax,若f(x)的图象上存在点A满足它关于y轴的对称点B落在g(x)的图象上,则实数a的取值范围是a≤$\frac{1}{e}$.

分析 由题意可知f(x)=g(-x)有解,即y=lnx与y=ax有交点,根据导数的几何意义,求出切点,结合图象,可知a的范围.

解答 解:∵函数f(x)=lnx-2x3与g(x)=2x3-ax,
若f(x)的图象上存在点A满足它关于y轴的对称点B落在g(x)的图象上,
∴f(x)=g(-x)有解,
∴lnx-2x3=-2x3+ax,
∴lnx=ax在(0,+∞)有解,
分别设y=lnx,y=ax,
若y=ax为y=lnx的切线,
∴y′=$\frac{1}{x}$,
设切点为(x0,y0),
∴a=$\frac{1}{{x}_{0}}$,ax0=lnx0
∴x0=e,
∴a=$\frac{1}{e}$,
结合图象可知,a≤$\frac{1}{e}$
故答案为:a≤$\frac{1}{e}$

点评 本题考查的知识点是利用导数研究曲线上某点的切线方程,以及函数值的问题,关键是转化为y=lnx与y=ax有交点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知f′(x)是函数f(x)(x∈R)的导函数,满足f′(x)=f(x),且f(0)=2,设函数g(x)=f(x)-lnf3(x)的一个零点为x0,则以下正确的是(  )
A.x0∈(0,1)B.x0∈(1,2)C.x0∈(2,3)D.x0∈(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于函数f(x)=(x2-2x)ex,有以下命题:
①不等式f(x)<0的解集是{x|0<x<2};  
②$f(-\sqrt{2})$是极大值,$f(\sqrt{2})$是极小值;
③f(x)有最小值,没有最大值;  
④f(x)有3个零点.
其中正确的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,直线l经过点P(1,1),倾斜角α=$\frac{π}{6}$,现以平面直角坐标系中的坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρsin2θ=8cosθ.
(1)写出直线l 的参数方程及曲线C 的直角坐标方程;
(2)设直线l与曲线C相交于 A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.空间直角坐标系中的点($\sqrt{2}$,$\sqrt{2}$,1)关于z轴对称的点的柱坐标为(  )
A.(2,$\frac{π}{4}$,1)B.(2$\sqrt{2}$,$\frac{π}{4}$,1)C.(2,$\frac{5π}{4}$,1)D.(2$\sqrt{2}$,$\frac{5π}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.倾斜角为45o的直线l经过y2=4x的焦点F,且与抛物线相交于A、B两点,则线段|AB|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow{b}$=(cosx,-1).
(1)当$\overrightarrow{a}$∥$\overrightarrow{b}$时,求tan2x的值;
(2)设函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$,已知f(θ)=$\frac{5}{4}$且0<θ<$\frac{π}{2}$,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{dn}的前n项的和为Sn,d1=1,$\frac{{S}_{n-1}}{{S}_{n}}$=4n(n≥2),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,已知平面α∩平面β=l,α⊥β,A,B是直线l上的两点,C,D是平面β内的两点,且DA⊥l,CB⊥l,DA=4,AB=6,CB=8,P是平面α内的一动点,使得直线CP,DP与平面α所成角相等,则三角形PAB面积的最大值为12.

查看答案和解析>>

同步练习册答案