精英家教网 > 高中数学 > 题目详情
12.计算(式中各字母均为正数):
 (1)$\frac{1+{a}^{\frac{1}{2}}}{1+{a}^{-\frac{1}{2}}}$-$\frac{2{a}^{\frac{1}{2}}}{a-1}$
(2)$\frac{{b}^{2}-2+{b}^{-2}}{{b}^{2}-{b}^{-2}}$.

分析 (1)(2)利用指数幂的运算性质、乘法公式即可得出.

解答 解:(1)原式=$\frac{{a}^{\frac{1}{2}}+a}{{a}^{\frac{1}{2}}+1}$-$\frac{2{a}^{\frac{1}{2}}}{a-1}$=${a}^{\frac{1}{2}}$-$\frac{2{a}^{\frac{1}{2}}}{a-1}$=$\frac{{a}^{\frac{1}{2}}(a-3)}{a-1}$.
(2)原式=$\frac{(b-{b}^{-1})^{2}}{(b+{b}^{-1})(b-{b}^{-1})}$=$\frac{b-{b}^{-1}}{b+{b}^{-1}}$=$\frac{{b}^{2}-1}{{b}^{2}+1}$.

点评 本题考查了指数幂的运算性质、乘法公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=$\frac{3}{5}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n∈N*
(1)求证:数列{$\frac{1}{{a}_{n}}$-1}成等比数列;
(2)设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,试证明:Tn-n<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x4-2x2+3.
(1)求曲线f(x)=x4-2x2+3在点(2,11)处的切线方程;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某人从点A向东位移60m到达点B,又从点B向东偏北30°方向位移50m到达C点,又从点C向北偏东60°方向位移30m到达D点,选用适当的比例尺作图,求点D相对于点A的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sinα$\sqrt{1-co{s}^{2}α}$+cosα$\sqrt{1-si{n}^{2}α}$=-1,则α的取值范围是[2kπ+π,2kπ+$\frac{3}{2}$π],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.f(x)=-$\frac{1}{3}$×4-x+1+b,等比数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)上.
(1)求b的值及数列{an}的通项公式;
(2)设bn=log2(83×an),记数列{bn}的前n项和为Tn,是否存在k∈N*,使得$\frac{{T}_{1}}{1}$+$\frac{{T}_{2}}{2}$+…+$\frac{{T}_{n}}{n}$<k对任意n∈N*恒成立?若存在,求出k的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-ax2+(2-a)x.
(1)若f′(1)=-6,求函数f(x)在(1,f(1))处的切线;
(2)设a>0,证明:当0<x<$\frac{1}{a}$时,f($\frac{1}{a}$+x)>f($\frac{1}{a}$-x);
(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{3},0≤x<1}\\{f(x-1),x≥1}\end{array}\right.$,若g(x)=f(x)-kx-2k有5个不同的零点,则实数k的取值范围是(  )
A.[$\frac{1}{7}$,$\frac{1}{6}$]B.[$\frac{1}{7}$,$\frac{1}{6}$)C.[$\frac{1}{8}$,$\frac{1}{7}$)D.($\frac{1}{8}$,$\frac{1}{7}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数g(x)=log3(2x+b)的图象过原点,函数f(x)=x2-ax+b的图象在区间($\frac{1}{2}$,3)上与x轴有交点,则实数a的取值范围是[2,$\frac{10}{3}$).

查看答案和解析>>

同步练习册答案