精英家教网 > 高中数学 > 题目详情
11.下列给出了四个结论,其中正确结论的个数是(  )
①常数数列一定是等比数列;
②在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,则△ABC是锐角三角形;
③若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$;
④若f(x)=sin2x+sinxcosx,则函数f(x)的图象关于直线x=-$\frac{π}{8}$对称.
A.1B.2C.3D.4

分析 ①根据等比数列的定义进行判断,
②根据向量数量积的公式进行判断,
③根据向量数量积的应用进行判断,
④根据三角函数的图象和性质,利用辅助角公式进行化简进行判断.

解答 解:①非零的常数数列一定是等比数列,当零常数列不是等比数列,故①错误;
②在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,则|$\overrightarrow{AB}$|•|$\overrightarrow{BC}$|cos(π-B)>0,即-cosB>0,则cosB<0.则B是钝角,则△ABC是钝角三角形,故②错误;
③若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则平方得$\overrightarrow{a}$2+$\overrightarrow{b}$2+$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$2+$\overrightarrow{b}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$,即$\overrightarrow{a}$⊥$\overrightarrow{b}$成立,故③正确;
④若f(x)=sin2x+sinxcosx,则f(x)=$\frac{1}{2}$-$\frac{1}{2}$cos2x+$\frac{1}{2}$sin2x=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$),
由2x-$\frac{π}{4}$=kπ+$\frac{π}{2}$得x=$\frac{4k+3π}{8}$,
当k=-1时,x=-$\frac{π}{8}$,即函数f(x)的图象关于直线x=-$\frac{π}{8}$对称.正确,故④正确,
故选:B

点评 本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.将5个颜色互不相同的球球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球球方法有(  )
A.60种B.30种C.25种D.20种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,c=2,a2=4b-4,则a=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C上任意一点到原点的距离与到A(3,-6)的距离之比均为$\frac{1}{2}$.
(1)求曲线C的方程.
(2)设点P(1,-2),过点P作两条相异直线分别与曲线C相交于B,C两点,且直线PB和直线PC的倾斜角互补,求证:直线BC的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,点P(0,2)关于直线y=-x的对称点在椭圆M上,且|F1F2|=2$\sqrt{3}$
(1)求椭圆M的方程;
(2)如图,椭圆M的上、下顶点分别为A,B过点P的直线l与椭圆M相交于两个不同的点C,D(C在线段PD之间).
(ⅰ)求$\overrightarrow{OC}$•$\overrightarrow{OD}$的取值范围;
(ⅱ)当AD与BC相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设P为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任一点,F1,F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线l:y=kx+m(m≠0)与椭圆交于P、Q两点,试问参数k和m满足什么条件时,直线OP,PQ,OQ的斜率依次成等比数列;
(Ⅲ)求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-e-x(x∈R,e=2.71828…)
(Ⅰ)求证:函数f(x)为奇函数;
(Ⅱ)t为实数,且f(x-t)+f(x2-t2)≥0对一切实数x都成立,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.四边形ABCD为菱形,ACFE为平行四边形,且平面ACFE⊥平面ABCD,设BD与AC相交于点G,H为FG的中点,AB=BD=2,AE=$\sqrt{3}$,CH=$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求证:CH⊥平面BDF
(Ⅱ)求三棱锥B-DEF的体积.

查看答案和解析>>

同步练习册答案