精英家教网 > 高中数学 > 题目详情
1.四边形ABCD为菱形,ACFE为平行四边形,且平面ACFE⊥平面ABCD,设BD与AC相交于点G,H为FG的中点,AB=BD=2,AE=$\sqrt{3}$,CH=$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求证:CH⊥平面BDF
(Ⅱ)求三棱锥B-DEF的体积.

分析 (Ⅰ)由ACFE为平行四边形,$AE=\sqrt{3}$,可得$CF=\sqrt{3}$,再由四边形ABCD为菱形,得到△ABD是以2为边长的等边三角形,从而得到CG=CF,再由H为FG的中点,可得CH⊥FG,结合BD⊥AC,平面ACFE⊥平面ABCD,得到BD⊥平面ACFE,进一步得到BD⊥CH.然后利用线面垂直的判定得CH⊥平面BDF;
(Ⅱ)连结EG,由(Ⅰ)可知BD⊥平面ACFE,进一步得到BD⊥EG,BD⊥FG.然后结合已知通过求解直角三角形可得FG⊥平面BDE,再利用等积法求得三棱锥B-DEF的体积.

解答 (Ⅰ)证明:∵ACFE为平行四边形,$AE=\sqrt{3}$,
∴$CF=\sqrt{3}$,
∵四边形ABCD为菱形,
∴AG=CG,BG=DG,AD=AB,
∵AB=BD=2,
∴△ABD是以2为边长的等边三角形,则$AG=CG=\sqrt{3}$,从而CG=CF,
∵H为FG的中点,
∴CH⊥FG,
∵四边形ABCD为菱形
∴BD⊥AC,
∵平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,
∴BD⊥平面ACFE,
∵CH?平面ACFE,
∴BD⊥CH.
∵BD∩FG=G,BD?平面BDF,FG?平面BDF,
∴CH⊥平面BDF;
(Ⅱ) 解:连结EG,由(Ⅰ)可知BD⊥平面ACFE,
∵FG?平面ACFE,EG?平面ACFE,
∴BD⊥EG,BD⊥FG.
由(Ⅰ)可知CH⊥FG,$CG=\sqrt{3}$,
∵$CH=\frac{{\sqrt{3}}}{2}$,
∴∠FGC=30°,
由(Ⅰ)可知CG=CF,
∴∠GFC=30°,从而∠FCG=120°,
∵ACFE为平行四边形,
∴∠EAG=60°,
由(Ⅰ)可知AE=AG,
∴△AEG为正三角形,从而$EG=\sqrt{3}$,∠AGE=60°,
∴∠EGF=180°-30°-60°=90°,即FG⊥EG,
∵BD∩EG=G,
∴FG⊥平面BDE,
在△CFG中,$FG=2HG=2\sqrt{C{G^2}-C{H^2}}=3$,
在△BDE中,${S_{△BDE}}=\frac{1}{2}BD•EG=\sqrt{3}$,
∴${V_{B-DEF}}={V_{F-BDE}}=\frac{1}{3}{S_{△BDE}}•FG=\frac{1}{3}×\sqrt{3}×3=\sqrt{3}$.

点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了等积法求三棱锥的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.下列给出了四个结论,其中正确结论的个数是(  )
①常数数列一定是等比数列;
②在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,则△ABC是锐角三角形;
③若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$;
④若f(x)=sin2x+sinxcosx,则函数f(x)的图象关于直线x=-$\frac{π}{8}$对称.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆M:$\frac{{x}^{2}}{2{c}^{2}}$+$\frac{{y}^{2}}{{c}^{2}}$=1(c>0)的离心率为e,右焦点为(c,0).
(1)若椭圆M的焦点为F1,F2,且|F1F2|=4$\sqrt{3}$e,P为M上一点,求|PF1|+|PF2|的值.
(2)如图所示,A是椭圆M上一点,且A在第二象限,A与B关于原点对称,C在x轴上,且AC与x轴垂直,若$\overrightarrow{CA}$•$\overrightarrow{CB}$=-4,△ABC的面积为4,直线BC与M交于另一点D,求线段BD的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.从某班的20名学生(其中男学生8名)中选出5名,参加学校举行的跳绳团体赛.
(1)若甲学生与乙学生必须参加,则有多少种不同的选法?
(2)若甲、乙两名学生至少有1人参加,则有多少种不同的选法?
(3)若至少有1名女学生和1名男学生,则有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}的前n项和Sn满足3Sn=4n+1-4,则数列{(3n-2)an}的前n项和为(n-1)4n+1+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等腰△ABC满足AB=AC,$\sqrt{3}$BC=2AB,点D为BC边上一点且AD=BD,则sin∠ADB的值为(  )
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.9个人排成一排,求在下列情况下,有多少种不同排法?
(1)甲不排头,也不排尾;
(2)甲、乙、丙三人必须在一起;
(3)甲、乙、丙三人两两不相邻;
(4)甲不排头,乙不排当中.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则“3<m<5”是“输出i的值为5”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1,an+1=2an(n∈N*),Sn为其前n项和.数列{bn}为等差数列,且b1=a1,b4=S3
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=$\frac{1}{{{b_n}•{b_{n+1}}}}$,Tn=c1+c2+c3+…+cn,求证:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案