精英家教网 > 高中数学 > 题目详情
16.数列{an}的前n项和Sn满足3Sn=4n+1-4,则数列{(3n-2)an}的前n项和为(n-1)4n+1+4.

分析 通过3Sn=4n+1-4与3Sn-1=4n-4(n-2)作差,进而计算可知an=4n,利用错位相减法计算即得结论.

解答 解:∵3Sn=4n+1-4,
∴3Sn-1=4n-4(n-2)(n≥2),
两式相减得:3an=3×4n,即an=4n(n≥2),
又∵3S1=41+1-4,即a1=4满足上式,
∴an=4n
记数列{(3n-2)an}的前n项和为Tn,则:
Tn=1×4+4×42+…+(3n-2)×4n
4Tn=1×42+4×43+…+(3n-5)×4n+(3n-2)×4n+1
两式相减得:-3Tn=4+3(42+43+…+4n)-(3n-2)×4n+1
=4+3×$\frac{{4}^{2}(1-{4}^{n-1})}{1-4}$-(3n-2)×4n+1
=4+4n+1-16-(3n-2)×4n+1
=-(3n-3)×4n+1-12,
∴Tn=4+(n-1)×4n+1
故答案为:4+(n-1)×4n+1

点评 本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知曲线C上任意一点到原点的距离与到A(3,-6)的距离之比均为$\frac{1}{2}$.
(1)求曲线C的方程.
(2)设点P(1,-2),过点P作两条相异直线分别与曲线C相交于B,C两点,且直线PB和直线PC的倾斜角互补,求证:直线BC的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,足球门框的长AB为2dw(1dw=3.66m),设足球为一点P,足球与A,B连线所成的角为α(0°<α<90°).
(1)若队员射门训练时,射门角度α=30°,求足球所在弧线的方程;
(2)已知点D到直线AB的距离为3dw,到直线AB的垂直平分线的距离为2dw,若教练员要求队员,当足球运至距离点D为$\sqrt{2}$dw处的一点时射门,问射门角度α最大可为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设z是纯虚数,若$\frac{1-i}{z+2}$是实数,则z=(  )
A.-2iB.-iC.iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,已知定点F1(0,-$\sqrt{3}$),F2(0,$\sqrt{3}$),动点P满足|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=2,设点P的曲线为C,直线l:y=kx+m与C交于A、B两点:
(1)写出曲线C的方程,并求出曲线C的轨迹;
(2)当m=1,求实数k的取值范围;
(2)证明:存在直线l,满足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{AB}$|,并求出实数k、m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.四边形ABCD为菱形,ACFE为平行四边形,且平面ACFE⊥平面ABCD,设BD与AC相交于点G,H为FG的中点,AB=BD=2,AE=$\sqrt{3}$,CH=$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求证:CH⊥平面BDF
(Ⅱ)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F1,F2是左右焦点,A,B是长轴两端点,点P(a,b)与F1,F2围成等腰三角形,且${S_{△P{F_1}{F_2}}}$=$\sqrt{3}$.
(I)求椭圆C的方程;
(Ⅱ)设点Q是椭圆上异于A,B的动点,直线QA、QB分别交直线l:x=m(m<-2)于M,N两点.
(i)当$\overrightarrow{Q{F_1}}$=λ$\overrightarrow{MN}$时,求Q点坐标;
(ii)是否存在实数m,使得以MN为直径的圆经过点F1?若存在,求出实数m的值,若不存在.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a=∫${\;}_{0}^{π}$sinxdx,若从[0,10]中任取一个数x,则使|x-1|≤a的概率为(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.高二年级5个班,每个班只能在《Nobody》,《suger》,《Catch Me》3首歌中任意选择一首作为自编操曲目,则3首歌都有班级选择的概率为$\frac{50}{81}$.

查看答案和解析>>

同步练习册答案