精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F1,F2是左右焦点,A,B是长轴两端点,点P(a,b)与F1,F2围成等腰三角形,且${S_{△P{F_1}{F_2}}}$=$\sqrt{3}$.
(I)求椭圆C的方程;
(Ⅱ)设点Q是椭圆上异于A,B的动点,直线QA、QB分别交直线l:x=m(m<-2)于M,N两点.
(i)当$\overrightarrow{Q{F_1}}$=λ$\overrightarrow{MN}$时,求Q点坐标;
(ii)是否存在实数m,使得以MN为直径的圆经过点F1?若存在,求出实数m的值,若不存在.请说明理由.

分析 (Ⅰ)由题意可得,F1F2=PF2,即(a-c)2+b2=4c2,再由${S}_{△P{F}_{1}{F}_{2}}=\sqrt{3}$,得bc=$\sqrt{3}$,然后结合隐含条件求得a,b,则椭圆方程可求;
(Ⅱ)(i)由$\overrightarrow{Q{F}_{1}}=λ\overrightarrow{MN}$,得则QF1⊥x轴,由(Ⅰ)求得F1(-1,0),设Q(-1,y),代入椭圆方程即可求得Q坐标;
(ii)设Q(x0,y0),得直线QA方程为$y=\frac{{y}_{0}}{{x}_{0}+2}(x+2)$,求出M点的坐标为(m,$\frac{(m+2){y}_{0}}{{x}_{0}+2}$).同理得N的坐标为$(m,\frac{(m-2){y}_{0}}{{x}_{0}-2})$.由${k}_{M{F}_{1}}•{k}_{N{F}_{1}}$=-1求得m=-4.可知存在实数m=-4,使得以MN为直径的圆经过点F.

解答 解:(Ⅰ)F1(-c,0),F2(c,0),由题意可得,F1F2=PF2
∴(a-c)2+b2=4c2
由${S}_{△P{F}_{1}{F}_{2}}=\sqrt{3}$,可得$\frac{1}{2}•2c•b=bc=\sqrt{3}$,
又a2=b2+c2,联立可得a=2,b=$\sqrt{3}$,
∴椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)(i)∵$\overrightarrow{Q{F}_{1}}=λ\overrightarrow{MN}$,
∴QF1∥MN,则QF1⊥x轴,
由(Ⅰ)知,c2=1,则F1(-1,0),
设Q(-1,y),则有$\frac{1}{4}+\frac{{y}^{2}}{3}=1$,即y=$±\frac{3}{2}$,
∴Q(-1,$±\frac{3}{2}$);
(ii)设Q(x0,y0),则${k}_{QA}=\frac{{y}_{0}}{{x}_{0}+2}$,直线QA方程为$y=\frac{{y}_{0}}{{x}_{0}+2}(x+2)$,
令x=m,得M点的坐标为(m,$\frac{(m+2){y}_{0}}{{x}_{0}+2}$).
同理${k}_{QB}=\frac{{y}_{0}}{{x}_{0}-2}$,直线QB的方程为$y=\frac{{y}_{0}}{{x}_{0}-2}(x-2)$,
得N的坐标为$(m,\frac{(m-2){y}_{0}}{{x}_{0}-2})$.
∴${k}_{M{F}_{1}}•{k}_{N{F}_{1}}=\frac{\frac{(m+2){y}_{0}}{2+{x}_{0}}}{m+1}•\frac{\frac{(m-2){y}_{0}}{{x}_{0}-2}}{m+1}$=$\frac{({m}^{2}-4){{y}_{0}}^{2}}{(m+1)^{2}({{x}_{0}}^{2}-4)}$.
又Q(x0,y0)在椭圆上,
∴$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{3}=1$,则$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-4}=-\frac{3}{4}$.
∴${k}_{M{F}_{1}}•{k}_{N{F}_{1}}$=$\frac{{m}^{2}-4}{(m+1)^{2}}•(-\frac{3}{4})=-1$.
解得m=-4.
∴存在实数m=-4,使得以MN为直径的圆经过点F.

点评 本题考查椭圆的标准方程,考查了椭圆的简单性质,考查直线与圆锥曲线位置关系的应用,考查逻辑思维能力及运算求解能力,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,已知F(c,0)是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点;圆F:(x-c)2+y2=a2与x轴交于D,E两点,其中E是椭圆C的左焦点.
(1)求椭圆C的离心率;
(2)设圆F与y轴的正半轴的交点为B,点A是点D关于y轴的对称点,试判断直线AB与圆F的位置关系;
(3)设直线BF与椭圆C交于另一点G,直线BD与椭圆C交于另一点M,若△BMG的面积为$\frac{32\sqrt{3}}{13}$,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在地面A,B两点仰望一僚望塔CD的顶部C,得仰角分别为60°、30°,又在塔底D测得A,B的张角为60°,已知AB=10$\sqrt{21}$米,试求瞭望塔的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}的前n项和Sn满足3Sn=4n+1-4,则数列{(3n-2)an}的前n项和为(n-1)4n+1+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某公司为了增加旅游效益,准备在下属的某生态园内选定1号到7号7个并排的大棚,种植包括草莓和葡萄在内的7种不同的水果,每个大棚只能种植一种水果供游客进行自摘.
(1)求草莓只能种植在3号或4号大棚,且葡萄不能在2号或5号大棚种植的方法种数;
(2)求种植葡萄和草莓之间恰好间隔3个大棚的方法种数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.9个人排成一排,求在下列情况下,有多少种不同排法?
(1)甲不排头,也不排尾;
(2)甲、乙、丙三人必须在一起;
(3)甲、乙、丙三人两两不相邻;
(4)甲不排头,乙不排当中.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设计一个算法,找出闭区间[20,25]上所有能被3整除的整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知如图,△ABC和△DBC所在的平面互相垂直,且AB=BC=BD=1,∠ABC=∠DBC=120°.
(Ⅰ)在直线BC上求作一点O,使BC⊥平面ADO,写出作法并说明理由;
(Ⅱ)求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3
命题①:?x∈R,都有f(x)+f(-x)=0;
命题②:?x1,x2∈R,(x1-x2)(f(x1)-f(x2))<0.(  )
A.命题①成立,命题②不成立B.命题①不成立,命题②成立
C.命题①和命题②都成立D.命题①和命题②都不成立

查看答案和解析>>

同步练习册答案