精英家教网 > 高中数学 > 题目详情
12.已知椭圆M:$\frac{{x}^{2}}{2{c}^{2}}$+$\frac{{y}^{2}}{{c}^{2}}$=1(c>0)的离心率为e,右焦点为(c,0).
(1)若椭圆M的焦点为F1,F2,且|F1F2|=4$\sqrt{3}$e,P为M上一点,求|PF1|+|PF2|的值.
(2)如图所示,A是椭圆M上一点,且A在第二象限,A与B关于原点对称,C在x轴上,且AC与x轴垂直,若$\overrightarrow{CA}$•$\overrightarrow{CB}$=-4,△ABC的面积为4,直线BC与M交于另一点D,求线段BD的中点坐标.

分析 (1)由椭圆方程可得a=$\sqrt{2}$c,b=c,求得离心率e=$\frac{\sqrt{2}}{2}$,由|F1F2|=4$\sqrt{3}$e,可得c=$\sqrt{6}$,即有2a=2$\sqrt{2}$c=4$\sqrt{3}$,再由椭圆的定义,即可得到所求值;
(2)设A(x1,y1)(x1<0,y1>0),B(-x1,-y1),C(x1,0),求得向量CA,CB的坐标,运用向量的数量积的坐标表示,解得y1,再由三角形的面积公式,求得x1,可得A的坐标,代入椭圆方程,进而得到椭圆方程,再由直线BC的方程联立椭圆方程,运用韦达定理和中点坐标公式,计算即可得到所求点的坐标.

解答 解:(1)椭圆M:$\frac{{x}^{2}}{2{c}^{2}}$+$\frac{{y}^{2}}{{c}^{2}}$=1的a=$\sqrt{2}$c,b=c,
即有e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
由|F1F2|=4$\sqrt{3}$e=2$\sqrt{6}$,即2c=2$\sqrt{6}$,
可得c=$\sqrt{6}$,即有2a=2$\sqrt{2}$c=4$\sqrt{3}$,
由椭圆的定义可得,|PF1|+|PF2|=2a=4$\sqrt{3}$;
(2)设A(x1,y1)(x1<0,y1>0),B(-x1,-y1),C(x1,0),
$\overrightarrow{CA}$=(0,y1),$\overrightarrow{CB}$=(-2x1,-y1),$\overrightarrow{CA}$•$\overrightarrow{CB}$=-y12=-4,
可得y1=2,
又S△ABC=$\frac{1}{2}$|y1|•|2x1|=4,解得x1=-2,即A(-2,2),
由A在M上,即有$\frac{4}{2{c}^{2}}$+$\frac{4}{{c}^{2}}$=1,解得c=$\sqrt{6}$,
即有椭圆的方程为$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1,
B(2,-2),C(-2,0),
BC:y=-$\frac{1}{2}$(x+2),与M方程联立,可得3x2+4x-20=0,
即有xB+xD=-$\frac{4}{3}$,设中点为N(x,y),
则x=$\frac{{x}_{B}+{x}_{D}}{2}$=-$\frac{2}{3}$,y=-$\frac{1}{2}$×(-$\frac{2}{3}$+2)=-$\frac{2}{3}$,
即有N(-$\frac{2}{3}$,-$\frac{2}{3}$).

点评 本题考查椭圆的定义、方程和性质,考查直线方程和椭圆方程联立,运用韦达定理和中点坐标公式,同时考查向量的数量积的坐标表示,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,c=2,a2=4b-4,则a=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设P为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任一点,F1,F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线l:y=kx+m(m≠0)与椭圆交于P、Q两点,试问参数k和m满足什么条件时,直线OP,PQ,OQ的斜率依次成等比数列;
(Ⅲ)求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-e-x(x∈R,e=2.71828…)
(Ⅰ)求证:函数f(x)为奇函数;
(Ⅱ)t为实数,且f(x-t)+f(x2-t2)≥0对一切实数x都成立,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,足球门框的长AB为2dw(1dw=3.66m),设足球为一点P,足球与A,B连线所成的角为α(0°<α<90°).
(1)若队员射门训练时,射门角度α=30°,求足球所在弧线的方程;
(2)已知点D到直线AB的距离为3dw,到直线AB的垂直平分线的距离为2dw,若教练员要求队员,当足球运至距离点D为$\sqrt{2}$dw处的一点时射门,问射门角度α最大可为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.大楼的顶上有一座电视塔,高20米,在地面某处测得塔顶的仰角为45°,塔底的仰角为30°,求此大楼的高度(保留两位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设z是纯虚数,若$\frac{1-i}{z+2}$是实数,则z=(  )
A.-2iB.-iC.iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.四边形ABCD为菱形,ACFE为平行四边形,且平面ACFE⊥平面ABCD,设BD与AC相交于点G,H为FG的中点,AB=BD=2,AE=$\sqrt{3}$,CH=$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求证:CH⊥平面BDF
(Ⅱ)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列的前n项和为Sn,且S1006>S1008>S1007,则满足SnSn-1<0的正整数n为(  )
A.2015B.2013C.2014D.2016

查看答案和解析>>

同步练习册答案