精英家教网 > 高中数学 > 题目详情
20.已知$\frac{π}{6}$<α<$\frac{π}{2}$.且cos(α-$\frac{π}{6}$)=$\frac{15}{17}$,求cosα,sinα.

分析 由条件利用同角三角函数的基本关系求得sin(α-$\frac{π}{6}$)的值,再利用两角和差的三角公式求得要求式子的值.

解答 解:∵已知$\frac{π}{6}$<α<$\frac{π}{2}$,且cos(α-$\frac{π}{6}$)=$\frac{15}{17}$,∴sin(α-$\frac{π}{6}$)=$\sqrt{{1-cos}^{2}(α-\frac{π}{6}})$=$\frac{8}{17}$,
∴cosα=cos[(α-$\frac{π}{6}$)+$\frac{π}{6}$]=cos(α-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(α-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{15}{17}•\frac{\sqrt{3}}{2}$-$\frac{8}{17}•\frac{1}{2}$=$\frac{15\sqrt{3}-8}{34}$.
sinα=sin[(α-$\frac{π}{6}$)+$\frac{π}{6}$]=sin(α-$\frac{π}{6}$)cos$\frac{π}{6}$+cos(α-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{8}{17}•\frac{\sqrt{3}}{2}$+$\frac{15}{17}•\frac{1}{2}$=$\frac{8\sqrt{3}+15}{34}$.

点评 本题主要考查同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.(1)计算$\frac{2{A}_{8}^{5}+7{A}_{8}^{4}}{{A}_{8}^{8}-{A}_{9}^{5}}$
(2)求证:A${\;}_{n+1}^{m}$=mA${\;}_{n}^{m-1}$+A${\;}_{n}^{m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中真命题的个数为(  )
①命题“若lgx=0,则x=l”的逆否命题为“若lgx≠0,则x≠1”
②若“p∧q”为假命题,则p,q均为假命题
③命题p:?x∈R,使得sinx>l;则¬p:?x∈R,均有sinx≤1
④“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.当实数m为何值时,sinx=$\frac{1+m}{2+m}$有意义?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足(1-i)z=i2016(其中i为虚数单位),则复数z的共扼复数$\overline{z}$的对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}•{bn}满足a1=2,an-1=an(an+1-1),bn=an-1.
(I)求数列{bn}的通项公式;
(Ⅱ)求数列{$\frac{{2}^{n}}{{b}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,A=$\frac{π}{6}$,$\overrightarrow{AB}$$•\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{BC}$2,|$\overrightarrow{AB}$|=1.
(I)求角B的大小;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2|x-a|(a∈R),求f(x)在[1,2]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=$\frac{2}{1+i}$+i,则z的共轭复数为(  )
A.1+iB.1+2iC.1D.2+3i

查看答案和解析>>

同步练习册答案