精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+b,x∈R(a、b∈R且是常数).若a是从-2、-1、1、2四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,则函数y=f(x)为奇函数的概率是
1
3
1
3
分析:确定b=0,再求出所有基本事件的个数,函数y=f(x)为奇函数包含的基本事件,即可得出结论.
解答:解:由题意,函数f(x)=ax+b为奇函数,当且仅当?x∈R,f(-x)=-f(x),即b=0,
基本事件共12个:(-2,0)、(-2,1)、(-2,2)、(-1,0)、(-1,1)、(-1,2)、(1,0)、(1,1)、(1,2)、(2,0)、(2,1)、(2,2),其中第一个数表示a的取值,第二个数表示b的取值,
事件A即“函数y=f(x)为奇函数”,包含的基本事件有4个:(-2,0)、(-1,0)、(1,0)、(2,0)
∴事件A发生的概率为
4
12
=
1
3

故答案为:
1
3
点评:本题主要考查古典概型,解决古典概型问题时最有效的工具是列举,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案