精英家教网 > 高中数学 > 题目详情
5.已知a>0,函数y=x3-ax在区间[1,+∞)上是单调函数,则a的最大值为(  )
A.0B.1C.2D.3

分析 法一:先利用导函数求出原函数的单调增区间,再让[1,+∞)是所求区间的子集可得结论.
法二:由题意a>0,函数f(x)=x3-ax,首先求出函数的导数,然后根据导数与函数单调性的关系进行判断.

解答 解:法一∵f(x)=x3-ax,
∴f′(x)=3x2-a=3(x-$\frac{\sqrt{a}}{3}$)(x+$\frac{\sqrt{a}}{3}$)
∴f(x)=x3-ax在(-∞,-$\frac{\sqrt{a}}{3}$),($\frac{\sqrt{a}}{3}$,+∞)上单调递增,
∵函数f(x)=x3-ax在[1,+∞)上单调,
∴$\frac{\sqrt{a}}{3}$≤1⇒a≤3
∴a的最大值为 3
法二:由法一得f′(x)=3x2-a,
∵函数f(x)=x3-ax在[1,+∞)上是单调函数,
根据二次函数的性质,显然是递增函数,
∴在[1,+∞)上,f′(x)≥0恒成立,
即a≤3x2在[1,+∞)上恒成立,
∴a≤3,
故选:D.

点评 本小题主要考查函数单调性的应用、函数导数与函数单调性之间的关系、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,动圆经过点M(0,t-2),N(0,t+2),P(-2,0).其中t∈R.
(1)求动圆圆心E的轨迹方程;
(2)过点P作直线l交轨迹E于不同的两点A,B,直线OA与直线OB分别交直线x=2于两点C,D,记△ACD与△BCD的面积分别为S1,S2.求S1+S2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.极坐标方程ρ=2cosθ-4sinθ对应的直角坐标方程为(  )
A.(x-1)2+(y+2)2=5B.(x-1)2+(y-2)2=5C.(x-2)2+(y-1)2=5D.(x+1)2+(y+2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,若A+C=5B,b=2.则$\frac{a}{sinA}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.${({x^2}+\frac{1}{x}+1)^6}$的展开式中所有项的系数之和为(  )
A.81B.243C.729D.2187

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$z=\frac{{{i^{2017}}}}{{1+{i^{2015}}}}$,则z在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在河岸边选定一点C,测出AC的距离是100m,∠BAC=60°,∠ACB=30°,则A、B两点的距离为(  )
A.40 mB.50 mC.60 mD.70 m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,横梁的横断面是一个矩形,而横梁的强度和它的矩形横断面的宽与高的平方的乘积成正比,要将直径为d的圆木锯成强度最大的横梁,则横断面的高和宽分别为(  )
A.$\sqrt{3}$d,$\frac{\sqrt{3}}{3}$dB.$\frac{\sqrt{3}}{3}$d,$\frac{\sqrt{6}}{3}$dC.$\frac{\sqrt{6}}{3}$d,$\frac{\sqrt{3}}{3}$dD.$\frac{\sqrt{6}}{3}$d,$\sqrt{3}$d

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.y=sin2x的图象向左平移$\frac{π}{4}$个单位,再向上平移1个单位,所得图象的函数解析式是(  )
A.y=2cos2xB.y=2sin2xC.y=1+sin(2x+$\frac{π}{4}$)D.y=cos2x

查看答案和解析>>

同步练习册答案