精英家教网 > 高中数学 > 题目详情
13.下列有关命题的说法错误的是(  )
A.若“p∨q”为假命题,则p,q均为假命题
B.“x=1”是“x≥1”的充分不必要条件
C.若命题p:?x0∈R,x${\;}_{0}^{2}$≥0,则命题¬p:?x∈R,x2<0
D.“sinx=$\frac{1}{2}$”的必要不充分条件是“x=$\frac{π}{6}$”

分析 利用复合命题的真假判断A,充要条件判断B、D,命题的否定判断C的正误即可.

解答 解:若“p∨q”为假命题,则p,q均为假命题,满足复合命题的真假关系,正确.
“x=1”可能“x≥1”,但是后者不能推出前者,所以“x=1”是“x≥1”的充分不必要条件,正确.
命题p:?x0∈R,x${\;}_{0}^{2}$≥0,则命题¬p:?x∈R,x2<0,满足命题的否定形式,正确.
“sinx=$\frac{1}{2}$”的必要不充分条件是“x=$\frac{π}{6}$”,应该是充分不必要条件.所以,错误.
故选:D.

点评 本题考查命题的真假的判断与应用,充要条件以及复合命题的真假,命题的否定,考查基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知△ABC中,角A、B、C成等差数列,且△ABC的面积为$\sqrt{3}$,则AC边的最小值2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.i是虚数单位,计算$\frac{8+4i}{3-i}$的结果为2+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U={x|1<x<4},集合A={x|0<log2x<1},则∁UA=(  )
A.{x|1<x≤2}B.{x|2≤x<3}C.{x|2<x<4}D.{x|2≤x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(2-x)(x≤0)}\\{f(x-1)-f(x-2)(x>0)}\end{array}\right.$,则f(2016)的值为log32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,若AB=3,AC=4,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,则$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BC}|}$的值为$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=2,an>0,且$\frac{{{a}_{n+1}}^{2}}{4}$-$\frac{{{a}_{n}}^{2}}{4}$=1(n∈N+
(1)求数列{an}的通项公式;
(2)若bn=($\frac{2}{{a}_{n}}$)4.当n≥2时,求证:b2+b3+…+bn≥$\frac{n-1}{2(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了解甲、乙两校高三学生某次数学联赛成绩情况,从这两学校中分别随机抽取30名学生成绩(百分制)作为样本,样本数据如下:
甲校:41 45 54 56 60 63 63 65 64 66 62 67 70 70 72
     72 74 74 81 83 85 85 87 86 86 89 91 92 98 99
乙校:46 55 62 64 70 73 72 72 73 75 77 77 79 79 79
     82 83 81 84 85 84 88 87 89 88 84 91 94 96 98
(1)若甲校所有参赛学生中每名学生被抽取的概率为0.15,求甲校高三年级参赛学生总人数;
(2)根据两组数据完成两校学生成绩的茎叶图;并通过茎叶图比较两校学生成绩的平均分及分散程度(不要求计算出具体值,给出结论即可);
(3)从样本中甲乙两校高三年级参赛学生成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=2\sqrt{2}cosxsin(x+\frac{π}{4})$.
(Ⅰ)求函数f(x)的最小正周期及图象的对称轴方程;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案