| A. | ln2 | B. | -ln2 | C. | $2\sqrt{e}-3$ | D. | e2-3 |
分析 不妨设g(a)=f(b)=m,从而可得b-a=2•${e}^{m-\frac{1}{2}}$-lnm-2,(m>0);再令h(m)=2•${e}^{m-\frac{1}{2}}$-lnm-2,从而由导数确定函数的单调性,再求最小值即可.
解答 解:不妨设g(a)=f(b)=m,
∴ea-2=ln$\frac{b}{2}$+$\frac{1}{2}$=m,
∴a-2=lnm,b=2•${e}^{m-\frac{1}{2}}$,
故b-a=2•${e}^{m-\frac{1}{2}}$-lnm-2,(m>0)
令h(m)=2•${e}^{m-\frac{1}{2}}$-lnm-2,
h′(m)=2•${e}^{m-\frac{1}{2}}$-$\frac{1}{m}$,
易知h′(m)在(0,+∞)上是增函数,
且h′($\frac{1}{2}$)=0,
故h(m)=2•${e}^{m-\frac{1}{2}}$-lnm-2在m=$\frac{1}{2}$处有最小值,
即b-a的最小值为ln2;
故选:A.
点评 本题考查了函数的性质应用及导数的综合应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3+2\sqrt{2}}{2}$ | B. | $\frac{14}{3}$ | C. | $\frac{15}{4}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com