精英家教网 > 高中数学 > 题目详情
3.证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.

分析 利用反证法结合函数的单调性,推出结果即可.

解答 证明:假设方程f(x)=0在区间[a,b]上至少有两个不同的实数根α,β,
即f(α)=f(β)=0.
不妨设α<β,
由于函数f(x)在区间[a,b]上是增函数,故f(α)<f(β),
这与f(α)=f(β)=0矛盾,
所以方程f(x)=0在区间[a,b]上至多只有一个实数根.

点评 本题考查函数的零点判定定理以及反证法的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}x=8{tan^2}θ\\ y=8tanθ\end{array}\right.$(θ为参数,$θ∈({-\frac{π}{2},\frac{π}{2}})$).在以O为极点,x轴的正半轴为极轴的极坐标系中,直线l的方程为$ρcos({θ-\frac{π}{4}})=-4\sqrt{2}$.
(1)求直线l的直角坐标方程;
(2)若P为曲线C上一点,Q为l上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2-4x+3=0作切线,切点分别为A,B,则四边形PADB面积的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求证:当a、b、c为正数时,(a+b+c)($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)≥9
(2)已知x∈R,a=x2-1,b=2x+2,求证a,b中至少有一个不少于0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图是正方体的平面展开图.关于这个正方体,有以下判断:①EC⊥平面AFN;
②CN∥平面AFB③BM∥DE④平面BDE∥平面NCF,其中正确判断的序号是(  )
A.①③B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是偶函数,又在区间(0,3)内是减函数的是(  )
A.y=2x-2-xB.y=cosxC.y=log2|x|D.y=x+x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{2}}}(x+1),0≤x≤1\\ f(x-1),x>1\end{array}\right.$,则$f(\sqrt{2})$的值是(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,网格纸上小正方形的边长为$\frac{1}{2}$,粗实线及粗虚线画出的是某几何体的三视图,则两个这样的几何体拼接而成的几何体表面积最小值为(  )
A.5+2$\sqrt{2}$B.6+2$\sqrt{2}$C.5D.6

查看答案和解析>>

同步练习册答案