精英家教网 > 高中数学 > 题目详情
13.如图所示,网格纸上小正方形的边长为$\frac{1}{2}$,粗实线及粗虚线画出的是某几何体的三视图,则两个这样的几何体拼接而成的几何体表面积最小值为(  )
A.5+2$\sqrt{2}$B.6+2$\sqrt{2}$C.5D.6

分析 由三视图可知:该几何体为两个三棱柱组成的.则两个这样的几何体拼接而成的几何体表面积最小值时为正方体.

解答 解:由三视图可知:该几何体为两个全等的直三棱柱组成的.
则两个这样的几何体拼接而成的几何体表面积最小值时为正方体:
因此最小表面积=12×6=6.
故选:D.

点评 本题考查了直三棱柱、正方体的三视图、面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图在复平面上,一个正方形的三个顶点对应的复数分别是1+2i,-2+i,0,那么这个正方形的第四个顶点对应的复数为(  )
A.3+iB.-1+3iC.1-3iD.3-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,其正视图,侧视图,俯视图均为全等的正方形,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(文科)等差数列{an}的首项a1=3,a5=11,bn=an-12
(1)求an和{ bn}的前n项和Sn
(2)若Tn=|b1|+|b2|+…+|bn|,求Tn
(3)设cn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算下列定积分.
(1)$\int_0^1{(2x+3)dx}$;
(2)$\int_e^{e^3}{\frac{1}{x}}dx$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.∠AOB如图,⊙O与x轴的正半轴交点为A,点B,C在⊙O上,且$B(\frac{3}{5},-\frac{4}{5})$,点C在第一象限,∠AOC=α,BC=1,则$cos(\frac{5π}{6}-α)$=(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=90°,2AB=2AD=CD,侧面PAD是正三角形且垂直于底面ABCD,E是PC的中点.
(1)求证:BE⊥平面PCD;
(2)在PB上是否存在一点F,使AF∥平面BDE?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=lnx+\frac{1}{2}{x^2}-ax+1$,下列结论中错误的是(  )
A.当a=2时,x=1是f(x)的一个极值点B.当-2<a<2时,函数f(x)无极值
C.当a>2时,f(x)的极小值小于0D.?a∈R,f(x)必有零点

查看答案和解析>>

同步练习册答案