精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)与函数g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=x3+x2+1,则f(1)-g(1)=1.

分析 根据函数奇偶性的性质建立方程即可.

解答 解:∵f(x)与函数g(x)分别是定义在R上的偶函数和奇函数,
且f(x)+g(x)=x3+x2+1,
∴f(-1)+g(-1)=(-1)3+(-1)2+1=-1+1+1=1,
即f(1)-g(1)=1,
故答案为:1;

点评 本题主要考查函数值的计算,根据条件令x=-1是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知f($\frac{x-1}{x+1}$)=-x-1.
(1)求f(x);
(2)求f(x)在区间[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题正确的是(  )
A.若非零向量$\overrightarrow{a}$与$\overrightarrow{b}$的方向相同或相反,则$\overrightarrow{a}$+$\overrightarrow{b}$的方向必与$\overrightarrow{a}$,$\overrightarrow{b}$之一方向相同
B.在△ABC中,必有$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$
C.若$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$,则A,B,C为一个三角形的三个顶点
D.若$\overrightarrow{a}$与$\overrightarrow{b}$为非零向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$|+|$\overrightarrow{b}$|一定相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$y={log_{\frac{1}{2}}}({{x^2}+2x-3})$的单调递增区间是(  )
A.(-∞,-3)B.(-∞,-1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为(  )
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)求证:sinα•sinβ=$\frac{1}{2}$[cos(α-β)-cos(α+β)];
(2)在锐角△ABC中,∠A=60°,BC=2,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点P在△ABC所在平面上,若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AB}$,且S△ABC=12,则△PAB的面积为(  )
A.4B.6C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sinA-sinB=$\frac{1}{3}$sinC,3b=2a,2≤a2+ac≤18,设△ABC的面积为S,p=$\sqrt{2}$a-S,则p的最小值是$\frac{7\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.f:x→x2是集合A到集合B的映射,如果B={1,2},那么A∩B只可能是(  )
A.{1,2}B.{1}或∅C.$\left\{{1,\sqrt{2},2}\right\}$D.{1}

查看答案和解析>>

同步练习册答案